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1 Introduction

In this report we would like to motivate the use of discrepancy theory in algorithms. Discrep-
ancy theory is a field in combinatorics that deals with coloring of elements of a set system.
The important results in discrepancy theory dates back to a famous paper by Spencer [1],
which is titled ”six standards deviations suffice”. But most of the results in this field were
non-constructive. Only recently there has been some ground breaking results, and it is now
possible to construct low discrepancy colorings in polynomial time [2, 3]. Quite surprisingly
these constructuve algorithms can be useful in designing efficient approximation algorithms
for seemingly unrelated problems like the classical bin-packing problem, the bin-packing
with rejection problem and the train delivery problem[4]. In section 2 we introduce various
aspects of discrepancy theory from an algorithmic perspective, then in section 3 we describe
the entropy method which is the key tool that has been used in the bin-packing problem. In
section 4, we give a brief sketch of the algorithm that gives a better approximation guarantee
for the bin-packing with rejection problem. Finally, we list some future applications of this
method in section 5.

2 Discrepancy Theory from an algorithmic perspective

The aim of this section is to give an overview of the applications of discrepancy theory
in algorithms. Consider a set system (V,C), specified by a collection of elements V =
{1, 2, ...,m} and a collection of subsets C = {S1, S2, ..., Sn} of V . Consider a coloring of V ,
given by χ : V → {1,−1}. The discrepancy of the set system under a coloring is a measure
of how uniformly all the sets are colored under that coloring. The formal definition is as
follows,

disc(χ,C) = max
S∈C
|χ(S)|

where |χ(S)| = |
∑

i∈S χ(i)| . The discrepancy of the system is defined as disc(C) =
minχ maxS∈C |χ(S)| , where the minimum is over all possible colorings. In many cases
discrepancy is not the correct quantity to look at and it is known that is is NP hard to
distinguish whether a set system with n = O(m), has a discrepancy of 0 or Ω(

√
m) [1]. The
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correct quantity to look at is hereditary discrepancy which is defined as follows,

herdisc(C) = max
V ′⊆V

disc(C|V ′)

where C|V ′ is the subset system C restricted to elements only in V ′. It is known that
herdisc(C) can be approximated to within a factor of log3/2 n efficiently [5]. Any set sys-
tem (V,C) can be represented by an incidence matrix A, and in this case we will set
herdisc(A) = herdisc(C). This notion can be generalized to a matrix A ∈ Rn×m. For
any V ⊆ {1, 2, 3, ...,m}, let AV denote the the matrix A restricted to columns belonging to
V . We can define the discrepancy of A as disc(A) = minχ∈{−1,1}m ||Aχ||∞. The hereditary
discrepancy of A is given by,

herdisc(A) = max
V⊆[m]

disc(AV )

Next we introduce a theorem[6] due to Lovasz et al., which explains our interest in
discrepancy from the point of view of approximation algorithms.

Theorem 1. For any x ∈ Rm satisfying Ax = b, there is a x̃ ∈ Zm with ||x̃ − x||∞ < 1 ,
such that ||A(x− x̃)||∞ ≤ herdisc(A).

Proof. For x = (x1, x2, ..., xm), we consider the binary expansion of each xi. That is we have
xi = bxic+

∑
j≥1 qij2

−j. Let A(k) be the sub-matrix of A restircted to the columns i for which
qik = 1. By definition of hereditary discrepancy there exists a coloring of these columns,
χ(k), such that ||Aχ(k)||∞ ≤ herdisc(A). Let us pad zeroes in the remaining elements of χ(k)

such that χ(k) ∈ Rm. Consider the vector x′ = x + 2−kχ(k). Now, the kth bit of all x′i is 0.
However, ||Ax − Ax′||∞ ≤ 2−k.herdisc(A). We can now iterate this process at bit positions
k − 1, k − 2, ..., 1, to get |Ax − Ax′| ≤ (2−k + 2−k+1 + ..... + 2−1).herdisc(A). Making k
arbitrarily large implies the result.

Moreover there is a randomized poly-time algorithm to find a coloring with a discrep-
ancy at most O((logm log n)1/2herdisc(A) [7]. In order to get meaningful bounds we need
upper bounds on the quantity herdisc(A). There are some good methods to upper bound
herdisc(A)[5, 2], which would then translate to upper bounds for error in rounding LP solu-
tions to integer values.

3 The Entropy Method

In this section we present the main ideas of [4] through a brief review of the rounding
algorithm for any given LP. Consider an LP relaxation of some combinatorial problem given
by

min{cTx|Ax ≥ b, x ≥ 0}.

where A ∈ Rn×m. The entropy rounding method aims to generate an integral rounding of
the LP solution x∗ to x̂ ∈ {0, 1}m ensuring cT x̂/cTx∗ is not too large.
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In order to present the rounding method we introduce the notion of random coloring, i.e.,
consider the random variable Aχ, where χ ∈ {±1}m is chosen uniformly at random. Using
the common notation H(·) as the entropy of a random variable and the notation [·] as the
nearest integer we have the following definition,

Theorem 2. Let A ∈ Rn×m be a matrix and ∆ = {∆1, . . . ,∆n} be a vector with ∆i > 0.
We define the ∆-approximate entropy of A as

H∆ (A) = Hχ∈{1,−1}m

({[
Aiχ

2∆i

]}
i=1,...,n

)
≤ m

5

Now that we have the necessary definitions , we are at a position to present the main
theorem of [4].

Theorem 3. Assume the following holds

(1) A ∈ RnA×m, ∆ = {∆1, . . . ,∆n} > 0 such that ∀J ∈ [m], H∆

(
AJ
)
≤ |J |

10

(2) a matrix B ∈ [−1, 1]nB×m, weights µ1, . . . , µnB
> 0 with

∑
i µi ≤ 1

(3) a vector x ∈ [0, 1]m and an objective function c ∈ [−1, 1]m.

Then there exists a vector y ∈ {0, 1}m with,

• Preserved expectation: E
(
cTy
)

= cTx, E (Ay) = Ax, E (By) = Bx.

• Bounded difference:

(i) |cTx− cTy| ≤ O(1)

(ii) |Aix− Aiy| ≤ log (min{4n, 4m}) .∆i, ∀i ∈ [nA], n := nA + nB

(iii) |Bix−Biy| ≤ O
(√

1/µi

)
, ∀i ∈ [nB].

Data: Solution of the LP, x.
Result: Integral solution y, after rounding
Round x to the nearest larger or smaller integer multiple of (1

2
)K ;

while x not integral do
Let k ∈ {1, 2, , . . . , K} be the index of the least bit in any entry of x ;
J = {j ∈ [m]|xj’s k-th bit is 1};
Choose the half coloring χ ∈ {0,±1}m with χ(j) = 0 ∀j ∈ J , supp(χ) ≥ |J |/2,
|Aiχ| ≤ ∆i and |Biχ| ≤ G−1(µi|J |/10)

√
J , for all i;

With probability 1
2

flip all signs of χ;
Update x := x+ (1

2
)kχ;

end
Algorithm 1: Entropy Rounding Method

The proof of the above theorem relies on the existence of a proper half coloring in each
iteration which is a direct consequence of Theorem 1. The construction of such a coloring
in polynomial time is feasible due to the SDP algorithm given by Nikhil Bansal in [7]. The
combination of these two key results in discrepancy theory enables us to effectively round
the LP solution.
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4 Application : Bin-packing with rejection

The bin packing problem (BP) involves packing a set of items into the minimum number
of bins of unit size. The bin packing with rejection (BPR) problem generalizes the above
problem by allowing rejection of elements at some specific cost. Though both the problems
are known to be NP-Hard [8] they admit Asymptotic FPTAS (AFPTAS). Denoting OPT
as the optimal solution, the best known additive approximation to the BPR problem was

O
(

OPT
log(OPT )1−o(1)

)
[10]. Whereas, the O

(
log2 (OPT )

)
[9] approximation to BP problem was

known for a long time.
In [4] the author proposes an AFPTAS with approximation O

(
log2 (OPT )

)
for the

BPR problem through the use of discrepancy methods. More recently there has been
a groundbreaking improvement as Rothvoss [11] designs an AFPTAS of approximation
O (log (OPT ) log (log (OPT ))) for the bin packing with rejection.

In the BPR problem we have an input with items of size s1 ≥ s2 ≥ · · · ≥ sn and penalty
{πi}ni=1. The set of potential bin patterns is B = {S|

∑
i∈S si ≤ 1}, whereas the rejection

pattern is given by R = {{i}|i ∈ [n]}. The union of these sets give us the complete set
system for the BPR problem, S = B∪R with |S| = m. Each set S ∈ B has a cost of cS := 1
and rejection of item i has cost ci := πi, for all i ∈ [n]. Let 1S = {0, 1}n with 1S,i = 1(i ∈ S)
denote the candidacy of elements in each set S. The natural LP relaxation to the BPR
problem is

OPTf = {cTx|
∑
s∈S

xs1s = 1, x ≥ 0}. (1)

The above LP (1), despite having an exponentially many variables, can be approximated
in polynomial time to get a feasible solution x with cost OPTf + 1 using ellipsoid method.
Where OPTf being the optimal solution of the LP satisfies OPTf ≤ OPT .

Define the pattern matrix as P = {1s}s∈S. This matrix has no inherent structure as
the variation in item sizes in each problem instance changes the potential bin patterns
significantly. Instead we consider the cumulative pattern matrix A with rows Ai =

∑i
i′=1 Pi,

which ensures all the columns in A are non-decreasing. For some constant C > 0, let

∆ =
({

C
si

}n
i=1

)
. Then we can bound the ∆-approximate entropy of this matrix due to the

following Lemma 4 as H∆(A) ≤ m/10.

Lemma 4 ([4]). Let A ∈ Zm×n≥0 be any matrix with column j having non decreasing elements
{0, . . . , bj} for all j ∈ [m]; let σ =

∑
j∈[m] bj and β = maxj∈[m] bj.

Then with any ∆ > 0 one has H∆(A) ≤ O
(
βσ
∆2

)
.

The rounding method employed in the work uses two key observations. For each i, the
items 1, . . . , i are covered (either in some bin or rejected) by an integral solution y ∈ {0, 1}m
if the deficit i−

∑
S∈S yS|S ∩{1, . . . , i}| is not positive. Note that for a feasible solution x of

LP (1), y has no deficit (covers all elements) if and only if Ay − Ax ≥ 0. Also differentiate
the items as ‘large’ items if si ≥ ε, and ‘small’ otherwise. We will introduce the value of ε
later. We describe the rounding method for the solution to the LP (1) below,

• Firstly, discard all items i with x{i} > 1− ε, which incurs an additional cost of εOPTf .
Therefore, in the solution, any remaining item j has at least ε fraction packed in bins.
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• Let there be L large items remaining. We have OPTf ≥ ε2L, because the optimal
solution must cover an ε fraction of all the L large items.

• For each potential bin pattern B we group all the small items together, call it item
L+ 1. Note this item can have different size for different set S. Let B ∈ R1×m be the
vector of the cumulative size of small items in each set, so BS ≤ 1, ∀s ∈ B. Consider
the cumulative pattern matrix A ∈ RL×m for the L large items, the vector B and the
parameter ∆, defined earlier. There exists a vector y ∈ {0, 1}L+1 such that, i) for the
sets {1, . . . , i} there is a deficit of O(log(L)/si) for all i ∈ [L] and ii) the (L + 1)-th
item has O(1) deficit [Theorem 3].

• The following subgroups of the large items give a finer partitioning based on size,

Gl = {i|si ∈ [
(

1
2

)l
,
(

1
2

)l+1
]},∀l = 0, . . . log (1/ε).

By removing the largest log(L) items from each subgroup l and packing them in
O(log(L) log

(
1
ε

)
) new bins we compensate for the deficit for the large items.

• The remaining deficit in small items is overcome by adding O(1) extra bins. The
drawback for combining the small items is that (L+ 1)-th element in each bin, maybe
packed fractionally. Therefore, we can cover the rejections and the large items integrally
but small items fractionally with δ = O (εOPTf )+O(1)+O(log(L) log

(
1
ε

)
) extra space.

• Finally, we only need ε(OPTf + δ) extra bins to construct an integral packing for the
smaller items from the fractional packing. This result in a complete integral solution
with the total excess cost of δ(1 + ε) + εOPTf .

• The careful choice of ε = log (OPTf ) /OPTf achieves the bound of O(log2 (OPTf )).

Therefore, the application of discrepancy theory gives a O
(
log2(OPT )

)
approximation

to the BPR problem.

5 Possible future applications

In the previous sections we gave a brief survey on how to use discrepancy theory in the
design of rounding techniques for an LP. Our objective is to internalize the process of entropy
rounding and apply it on some existing or new LP relaxation of combinatorial optimization
problem. We are interested in the problem of packing cycles in graphs [12]. Suppose we have
a graph given by G = (V,E) and let C denote the set of all cycles in the graph, which can
be exponential in number. We would like to find the largest number of edge disjoint cycles
in the graph. The problem has a natural ILP formulation given by,

OPT = {max
∑
C∈C

xC |
∑
C3e

xC ≤ 1 for all e ∈ E, xC ∈ {0, 1},∀C ∈ C}

The corresponding LP relaxation can be solved using the ellipsoid method. The structure
of this problem is very similar to that of the bin-packing problem. Therefore, we believe
that the application of the entropy method to this problem will yield meaningful results.
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