
Power of Choices: Performance under Error and Compression

Soumya Basu and Vatsal Shah

December 7, 2015

1 Introduction

We consider the balls-into-bins problem where m balls are dropped sequentially in n bins using some
randomized scheme. The design of a simple algorithm which can efficiently balance the load among
the n bins. This simple model finds its utility in various important applications like hashing, online
load balancing, routing, to name a few. The balls generally model independent tasks and items in
the system whereas the bins represent the necessary resources.

An important class of randomized allocation schemes is the d-choice, d > 0 being an integer. At
every step d bins are chosen independently and uniformly at random (i.u.a.r.) from the n bins and
dropped into the least loaded of the chosen bins. The scheme with d = 1 is known as the “single
choice scheme” and has been analyzed extensively in the literature. An interesting result dictates for
m = n the heavily loaded bin contains O(logn

log logn
) (see [5]) balls with high probability. The schemes

with d ≥ 2 for m = n, surprisingly achieves a heavily loaded bin of size O(log log n) as shown by
Azar et al. in their seminal paper [1]. This technique, popularly known as the “Power of Choices”,
has been explored and extended in various directions including the application in queuing networks
[6].

In this review paper we focus on the scaling and the robustness of the balls-into-bins problem
motivated from its application in real-world systems. In a practical load balancing scenario the tasks
keep on arriving and as a consequence the analysis for m = n fails to capture the evolution of the
system. We address this issue in Section 2, where we review techniques which provide guarantees as
the number of balls m scales. Further insights from practical systems dictates an algorithm to be
robust against errors. The single choice scheme demonstrates robust behavior as the algorithm is
independent of the system state. Unfortunately, for d ≥ 2 the dependence on system state, though
small, allows for errors. We investigate this robustness issue in Section 3. The systems in use today
consists of large scale resources and it is desired to efficiently store the system state, often using
lossy compression techniques. In Section 4 we present recent result which focuses on the space
requirements necessary for the implementation of balls-into-bins algorithms. Finally, we conclude in
Section 5 following a short discussion in Section 6 about possible future directions in the quest of
robust, scalable and simple algorithm for balls-into-bins problem.

2 Balanced Allocation in Balls-into-Bins

In this section we first introduce the model of balls and bins formally for d-choice paradigm. The
focus of the remaining part is to analyze the growth in the size of the maximum bin as the number
of balls m scales. For example, the analysis of d = 1 choice allocation for a broad range of m is
considered [5]. We will investigate the maximum load for d > 1, i.e. “Power of choices” paradigm, for
m >> n. A brilliant result due to Berenbrink et al [3], shows that even with m >> n the maximum
load is m

n
+ log logn

log d
+ Θ(1) with probability (w.p.) 1 − l 1

1/poly(n)
. In this paper we instead provide

1

proof sketch to a relaxed version due to Talwar et al. [7]. This states that the maximum load of a
bin after dropping m balls is m

n
+ log logn

log d
+ Θ(log(3) n) w.p. 1− 1

poly(logn)
.

2.1 System Model

We consider the weighted balls-into-bins problem as the generalization of the original problem where
each ball has a weight w drawn from a distribution D i.u.a.r. and the load of a bin equals the sum
of weights of balls inside the bin at any instance. Clearly, the unweighted case corresponds to the
distribution 1{w=1}.

We consider the system is slotted and at any time slot one ball enters into one bin, following a
fixed balls-into-bins algorithm, A. We call an algorithm A randomized if the algorithm uses random
bins in its execution. A generalized framework to describe a large class of randomized algorithm A,
uses the strategy vector p = (p1, . . . , pn) where pi denotes the probability of picking the ith loaded bin
in the system (see, [7]). As for example we can describe the single choice algorithm A1 as p = 1

n
1,

where as the d-choice algorithm Ad corresponds to the probability vector,

pi =

(
i

n

)d
−
(
i− 1

n

)d
, ∀ i ∈ [n] (1)

The system can be represented as a normalized vector x(t) = {x1(t), . . . , xn(t)}, where xi(t)
represents the deviation from the mean load in the bin i at time slot t. Further it has been assumed
that x has been sorted in increasing order x1 ≥ · · · ≥ xn. Denote the random process of the load
deviation in bin under allocation under A as X(t). For a strategy vector p the process X(t) is given
by the following discrete time Markov process (DTMC) [7],

• Given the current state x(t) for the ball at (t+ 1)-th step

– Sample the new position, j ∈p [n]

– Sample the weight, W from distribution D

• Define yi as follows, for all i ∈ [n]:

yi =

{
xi(t) +W − W

n
if i = j

xi(t)− W
n

if i 6= j

• Sort y = (y1, . . . , yn) to obtain new state x(t+ 1)

For the rest of the section we are interested in establishing high probability upper bounds for the
highest deviation from the mean, Gap(t) = maxi xi(t). It is obvious that any such bound on Gap(t),
say Gn(t), implies the heaviest loaded bin contains t

n
+ Θ(Gn(t)) w.h.p.

2.2 Power of Choices

In this section we address heavily loaded balls-into-bins problem with Power of Choices. The con-
centration around the mean load for unweighted balls was first shown by Berenkbrink et al. [3].
Recently, Talwar et al. extended the result for the weighted balls [7]and provided a simpler proof for
the unweighted version with slightly relaxed concentration [8].

Theorem 2.1. For any m, the gap between maximum and average of Power of d choices for un-
weighted balls, follows

• Pr[Gap(m) > log logn
log d

+ γ(c)] ≤ n−c, for any c > 0 [3],

2

• Pr[Gap(m) > log logn
log d

+ c log(3) n] ≤ n−c, for some absolute constant c [8].

Proof. The proof of high probability bounds on the Gap(m) for m >> n is built upon two key ideas,
namely,

• Weak Gap Theorem which states that w.h.p. Gap(t) is bounded reasonably for n and t.

• Short Memory Theorem which proves given an initial gap of ∆, additional poly(n)∆ steps
of the “Power of Choices” allocation wipes out the memory of the system.

In the rest of the section we develop the key blocks in the proof differentiating the weighted
case from the unweighted case, whenever necessary. Further for this purpose, let us denote the k-th
moment of weight distribution D as Mk and it is finite for k = 2.

Before presenting the Weak Gap Theorem it is of some value to differentiate the approach taken
in [3] to that of [8]. In the work of Berenbrink et al. the Weak Gap Lemma statement is somewhat
trivial. This leads to the problem of tight analysis of the Short Memory Theorem where the authors
needed to account for even a constant number of ball mismatch in n drops of balls. On the other
hand using potential function approach Talwar et. al. were able to reduce the efforts needed in the
Short Memory Theorem part. We follow the approach of Talwar et al in this paper. Specifically, they
draw results from [4] to construct a potential function of the form

∑
i exp(a|xi|) and using Lyapnov

drift technique show that for d > 1,(a and b are constants)

E

[∑
i

exp(a|xi|)

]
≤ bn. (2)

Theorem 2.2. Weak Gap Theorem [8] For all t and every c ≥ 0, it holds that Pr[Gap(t) ≥ c logn
a

] ≤
bn
nc
. This implies for every c there is a γ such that Pr[Gap(t) ≥ γ log n] ≤ n−c.

Proof. Follows from Markov inequality for
∑

i exp(a|xi|) and inequality 2.

We next present the Short Memory theorem of [8] which implies that from a given gap ∆ it takes
n∆ more steps to attain a gap of O(logL) on an average. It can be easily seen that the Theorem 2.2
provides a nice starting point of L = O(log n) which allows us to move to a gap of O(log log n) in
O(n log n) steps. Finally, to attain a high probability bound as given in Theorem 2.1 ([8] version),
another O(n log log n suffice. Next we present the Short Memory Theorem for d = 2 which easily
generalizes to d > 2.

Theorem 2.3. Short Memory Theorem [8] There is a universal constant γ such that the following

holds: for any t, `, L such that 1 ≤ ` ≤ L ≤ n
1
4 and Pr[Gap(t) ≥ L] ≤ 1

2
,

Pr[Gap(t+ L) ≥ log log n+ `+ γ] ≤ Pr[Gap(t) ≥ L] +
16bL3

exp(a`)
+

1

n2
,

where a and b are given in inequality 2.

Proof. The proof uses the classic Layered Induction approach from Azar et al. [1]. The first term
in the bound, Pr[Gap(t) ≥ L], represents bad event in the starting case. Conditioned on the good
events Gap(t) < L it argues that the probability of bins which contain large number of bins drops
doubly exponentially in the number of steps t. But this does not suffice to extend the bounds to
t > n. Instead using the fact even the lightly loaded bins are concentrated around the mean one can
argue as the system enter the regime of t > n the lightly loaded bins gets picked more.

3

Finally to conclude this section we present the generalization to the weighted balls case. As the
authors of the paper [8] remark that all the components of the proof extends to weighted case except
for the necessary condition Pr[Gap(t) ≥ c′ log n] to be small enough. This holds for unweighted case
through comparison with single choice schemes but breaks down for weighted case for certain regime
of m. Specifically, for O(n) and Ω(n log n) the bounds in Theorem 2.1 is valid for the weighted case as
well. They provide matching lower bonds on the gap for the mentioned regime. Further the authors
show that for certain distribution outside the mentioned regime we have Ω(log n) gap.

3 Error in Choices: (1 + β) choice

Until now, we have discussed the balls and bins problem under the standard assumptions that the
information about the load of any bin is instantaneously and accurately available to every incoming
ball. The breakdown of these assumptions does not affect the single choice problem but it does cause
issues in the d−choice problem. Incorrect reporting of the load can be attributed to a host of factors:

• Errors may be introduced while communicating the load

• Delays in the system means that the load reported by the system at the current time slot can
be inaccurate

• For some cases, it might not be practical to store the load of all the bins when n is very large
and so communicating the load of each and every bin may not be always possible

Let us define ‘gap’ as the difference between the maximum load and the average load.
There are m balls and n bins and each ball falls in a random bin with probability 1 − β, and

the lesser loaded of two (d for d-choice) random bins with probability β. Thus, when β = 0, this
problem reduces to the single-choice problem and when β = 1 it reduces to two choice problem. For

the standard case, we know that when its a single choice problem, the gap is O(
√

m logn
n

) with high

probability while for the d− choice problem the gap is atmost O(log logn
log d

) with high probability. The

work by [4] deals with finding the bounds on the maximum load for the (1+β) choice problem which
is an intermediate case between the above two problems.

The strategy vector for the (1 + β) choice problem is given as follows:

pi =
β(2i− 1)

n2
+

1− β
n

(3)

As has been mentioned in section 2, the monotonicity of pi is necessary for showing the upper and
lower bounds for the maximum loaded bin. To find the upper bound, this paper draws parallels with
the biased random walk in d dimensions (for d choice problem) and finds the expected maximum drift
(load) with high probability. We know that an unbiased random walk in two dimensions starting at
0 is at an expected distance of

√
m after m steps. But if the bias is towards 0, then the expected

distance is a constant independent of m. This will be our motivation to obtain an upper bound for
the (1 + β) choice problem.

For our case, we know that the difference between two loaded bins is an unbiased random walk
with probability 1− β and a biased random walk with probability β. In order to show results using
mean drift criteria, we need to define a suitable potential function Γ which satisfies the following
conditions:

i) If Γ is small then the allocation is balanced

ii) Expectation of Γ is independent of m

4

In this section, we will give a sketch of the proof for the high probability upper bounds of the
maximum load in the (1 + β) process with weighted balls for a large class of distributions D. The
system model described in the Section 2.1 is adopted in the following analysis.

The authors make the following two assumptions regarding the elements of the probability dis-
tribution vector p:

a) pi ≤ pi+1 ∀i ∈ [n − 1]: Ensures that the performance of the (1 + β) choice is not worse than
the single choice method

b) pn
3
≤ 1−4ε

n
and p 2n

3
≥ 1+4ε

n
: Guarantees that the allocation rule prefers the least loaded third

of bin over the most loaded third

For ε = β
12

, both these assumptions are satisfied for the (1 + β) choice process . The authors in [4],
then define the moment generating function M(λ) = E[exp(λW)] and there exists a z > 1 such that
for every |z| < λ

2
, there is a S ≥ 1 such that M”(z) < 2S.

The potential function is then defined as follows:

Γ(t) = Γ(x(t)) := Φ(t) + Ψ(t)

where Φ(t) = Φ(x(t)) :=
n∑
i=1

exp(αxi)

and Ψ(t) = Ψ(x(t)) :=
n∑
i=1

exp(−αxi)

where α = min ε
6S
, λ
2

The proof mainly involves using the Lyapunov drift technique for the above potential function
Γ(t). A brief summary of the proof including the following three lemmas used for proving the high
probability upper bounds for the 1 +β choice problem is now described in the remaining part of this
section:

Lemma 3.1. E [Φ(t+ 1)− Φ(t)|x(t)] ≤
∑n

i=1

(
pi(α + S2

α)− (α
n
− S α2

n2)
)

exp (αxi) ≤ 2α
n

Φ(t)

E [Ψ(t+ 1)−Ψ(t)|x(t)] ≤≤
∑n

i=1

(
pi(−α + S2

α) + (α
n

+ S α2

n2)
)

exp−(αxi) ≤ 2α
n

Ψ(t)

Lemma 3.2. If x 3n
4

(t) ≤ 0, then E [Φ(t+ 1)|x(t)] ≤
(
1− α

n

)
Φ(t) + 1

If xn
4
(t) ≥ 0, then E [Ψ(t+ 1)|x(t)] ≤

(
1− α

n

)
Ψ(t) + 1

Lemma 3.3. Suppose that x 3n
4
> 0 and E[∆Φ|x(t)] ≥ −αε

4n
Φ. Then either Φ < ε

4
Ψ or Γ < cn

Suppose that xn
4
< 0 and E[∆Ψ|x(t)] ≥ −αε

4n
Ψ. Then either Ψ < ε

4
Φ or Γ < cn

3.1 is used to prove the upper bounds for the expected 1-slot drift for Φ(t) and Ψ(t). The proofs
mainly involve using moment generating functions to bound the drifts and then bounding these
moment generating functions based on our assusmptions.

3.2 deal with showing that either Φ(t) or Ψ(t) decrease in expectation conditioned on x(t) when
the configurations are reasonably balanced. The proof for these lemmas involves formulating an
optimization problem to find the maximum value of the first term (pi(α+S2

α) exp (αxi) and pi(−α+
S2
α) exp (−αxi) respectively) in Lemma 2.1 with the constraints of reasonbaly balanced configurations

and monotonicity of exp (αxi) and then using the maximum value of the optimization problem to
obtain the required decrease in expectation.

3.3 is used to bound Γ(t) ≤ an for some a > 0. This is proved by combining the previous two
lemmas along with the assumptions of reasonably balanced configurations of the bins. Combining
the above three lemmas, we get our main theorem which shows the supermartingale type of property
for Γ(t) ,

5

Theorem 3.4. E [Γ(t+ 1)|x(t)] ≤
(
1− αε

4n

)
Γ(t) + 1

Using the above theorem, it is easy to show that E[Γ(t)] = O(n) and since we have exp (αGap(t)) ≤
Γ(t), we have the following bound for the gap between the maximum load and average load with
high probability:

E[Gap(t)] ≤ 1

α
E[Γ(t)] ≤ O

(
log n

β

β

)
Using results from [5], the authors similarly show a lower bound for the expected gap, E[Gap(t)] =

Ω
(

(1− β) logn
β

)
. To summarize, this paper transforms the balls and bins problem into a Markov

Chain and then uses the Mean Drift criteria to obtain upper bounds for the maximum load in the
bin for the (1 + β) choice problem. This is the one of the first works on the bounds for the (1 + β)
choice problem for the non-trivial weighted case.

4 Compression

This section mainly deals with the issue of compression in balls and bins. For n balls and n bins, the

load in the maximum bin is O
(

logn
log logn

)
for the single choice problem. For the two choice problem,

the maximum load in any bin is O(log log n). Thus, we will need a maximum of O(log log log n) bits
to store the load of each bin and for n bins, we will require O(n log log log n) bits. Compression is
necessary when:

• Insufficient Memory: When we do not have sufficient memory to store the load of all the bins.

• Communication complexity: When it is not possible to communicate the load of all the bins.

[1] showed that if we divide the number of bins into groups of log log n bins, then we only require

O
(

n
log logn

log log log n
)

= o(n) bits. [2] discusses this issues and gives lower bound when we have

n1−δ bits of memory. The following results hold for the n− balls, n− bins case and each ball has 2
choices to make. But the information about the load of the bin may not always be available

Theorem 4.1. We are sequentially given n balls. We have to put each of them into one of two
bins chosen uniformly and independently at random among n bins. We have only M = n1−δ bits of
memory (δ > 0 may depend on n), our choice where to put a ball can depend on these memory bits
and random bits. Then the maximum load will be atleast δ log logn

logn
with probability 1− o(1).

The proof of this theorem can be obtained by applying Chernoff bounds on the events that the
ball is put in a new bin instead of those already present in the memory.

The following theorem gives matching upper bounds in the communication complexity model
with atmost n1−δ bits of transmission possible.

Theorem 4.2. There exists an algorithm that gets M = n1−δ bits of advice before each step and uses

no other memory, and ensure that the heaviest bin contains atmost O
(

δ logn
log logn

)
balls w.h.p.

For a two-choice problem, the probability pi that the ball is in bin i never exceeds 2
n

and so the

probability that after n steps the total number of balls exceeds T = 2δ logn
log logn

(
1 +

2 log 1
δ

log (δ logn)

)
. This

quantity can be asymptotically be upper bounded by o(1
nδ logn

). Thus the number of bins with T balls

is atmost n1−δ

2 logn
w.h.p.. For the upper bound, the authors suggest a new algorithm. The algorithm

suggested in [2] basically only communicates the load of all the bins in L, i.e. the set of bins with
atleast T balls.

6

• If both the bins are in L, then the algorithm picks the bins with the lesser load (fewer number
of balls)

• If one of the bins is in L, then the algorithm chooses the other bin

• If both the bins are not in L, then the algorithm selects one of the bins randomly

The proof draws parallels from the ’always-go-left’ algorithm mentioned in [1] and combines it with
the proof for the power of two choices. The number of extra balls in a bin is the total number
of balls on that bin minus T . It can be shown that the total number of extra balls can be upper
bounded using the power of two choice proof by O(log log n) and thus the maximum load in any bin

is T +O(log log n) = O
(

δ logn
log logn

)
balls w.h.p.

5 Conclusion

In this survey, we start by giving a brief introduction to the existing results for the power of choices
problem. This is followed by a detailed summary of the technique used by [8] to show the O(log log n)
bounds with high probability. We then take a look at the problems involved in the real world
implementation of the balls and bins problem including error and compression. The reported load
may not always be equal to the actual load in the bin due to a host of reasons. In this survey, we
also describe a technique in [7] which analyzes the bounds for the gap between the maximum load
and the average load for the (1 + β) choice case. The (1 + β) choice can also be used to represent
error in reporting load to the incoming balls. Finally, we take a look at the issues of compression
with respect to limited memory and communication complexity. The paper by [2] proves the lower
bounds for the maximum load in presence of compression case when we have n1−δ bits of memory
and communication. The authors then gives an algorithm with matching upper bounds when the
system can utilize atmost n1−δ bits for communication.

6 Future Work

The Power of Two Choices Problem can be used in a host of new applications such as improving the
convergence of stochastic gradient descent and the coordinate descent algorithms. For example, in
the stochastic gradient descent algorithm, we hope to show that if we use a power of d-choices type
of technique and pick the sample with the highest gradient and try and proof the theoretical bounds
for the convergence. The relationship between the maximum times any sample is selected and its
effect on convergence can also be explored. The fundamental issue with implementing the power of
two choices in the stochastic gradient descent algorithms is the potential advantage that might be
obtained by using both the samples of the gradient instead of the maximum one.

Another area that can be explored is the designing of error tolerant algorithms and how analyse
how it affects the performance of the power of two choices. For example in SGD, we can potentially
use (d−1) previous gradients and sampling only one new example per slot. But this introduces error
in the gradient estimates and which will consequently stop us from using the traditional analysis of
the power of choice problem. Finally the issue of compression of the state memory can be addressed
where to keep track of the frequencies the database/system manager can maintain some sort of sketch
of the frequency estimates of the actual system. This along with error guarantees in Power of Choices
may provide theoretical guarantees on the effect of compression on load balancing.

7

References

[1] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Upfal. Balanced allocations. SIAM journal on
computing, 29(1):180–200, 1999.

[2] Itai Benjamini, Yury Makarychev, et al. Balanced allocation: memory performance tradeoffs. The
Annals of Applied Probability, 22(4):1642–1649, 2012.

[3] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Balanced allocations: The
heavily loaded case. SIAM Journal on Computing, 35(6):1350–1385, 2006.

[4] Yuval Peres, Kunal Talwar, and Udi Wieder. The (1+ β)-choice process and weighted balls-into-bins. In
Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 1613–1619.
Society for Industrial and Applied Mathematics, 2010.

[5] Martin Raab and Angelika Steger. “balls into bins”—a simple and tight analysis. In Randomization and
Approximation Techniques in Computer Science, pages 159–170. Springer, 1998.

[6] Andrea W Richa, M Mitzenmacher, and R Sitaraman. The power of two random choices: A survey of
techniques and results. Combinatorial Optimization, 9:255–304, 2001.

[7] Kunal Talwar and Udi Wieder. Balanced allocations: the weighted case. In Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing, pages 256–265. ACM, 2007.

[8] Kunal Talwar and Udi Wieder. Balanced allocations: A simple proof for the heavily loaded case. In
Automata, Languages, and Programming, pages 979–990. Springer, 2014.

8

