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Abstract—In recent years various random graph models have
been introduced to study real world networks, e.g. social,
telecommunication, vehicular networks. The exponential random
graph model promises to capture the reciprocity exhibited by
these networks. In dealing with parameter estimation, hypothesis
testing and similar practical issues the sampling from this distri-
bution is necessary. The sampling is typically based on Markov
chain Monte Carlo methods. Specifically, Glauber dynamics or
Metropolis-Hastings method.

In this paper we review the seminal work on Mixing Time
of Random Graphs by Shankar Bhamidi et al. The mentioned
work differentiates the exponential random graph model in high
and low temperature regimes. In high temperature employing
Glauber dynamics the mixing in Θ(n2logn) is proved, n being
the number of vertices in the graph. But on the contrary, in the
low temperature regime the mixing is exponentially slow with the
use of O(n) Glauber dynamics in each step. Furthermore, they
showed that in the high temperature regime the model becomes
similar to Erdős-Rényi Graphs and fails to model the desired
reciprocity.

I. INTRODUCTION

In the recent past the study of real world networks, specif-
ically social, biochemical, vehicular and web based networks,
have gained popularity leading to the development of var-
ious mathematical models. These models have focused on
explaining the typical characteristics, such as power law degree
behaviour, small world properties and clustering. An important
example is the clustering in social networks which emerges
from the reciprocity of friendship among people. Many other-
wise useful network models, e.g. preferential attachment, fail
to model clustering given their locally tree like structures.

The exponential random graph model follows the statis-
tical mechanics approach which is to weight a probability
measure on the space of graphs by defining a Hamiltonian.
It uses parametric modelling to assign higher probability
mass to the entities with some “desirable” properties. The
Hamiltonian in this model is a function of subgraph counts
of special structures which will be formally introduced in
Section III. The model can be efficiently used in parameter
estimation, hypothesis testing or modelling, given specific
observations over subgraph counts. For this purpose efficient
sampling of the graphs is necessary. Markov chain Monte
Carlo (MCMC) techniques, specifically Glauber dynamics or
Metropolis-Hastings method, forms reversible ergodic Markov
chains leading to the convergence to the required stationary
distribution.

This paper mainly reviews the contribution of S. Bhamidi,
G. Brestler, A. Sly on the mixing time of exponential random
graphs. We present the main results and give adequate outline

to the proofs presented in the paper [1]. Additionally, we try
to develop some valuable insights into the overall approach
taken in their work. The rest of the paper is organised as
follows. The related works are presented briefly in Section II.
In Section III we formally define the model and associated
MCMC sampling. The phases of the graph is explained in
this section. Next, we present the main results by S. Bhamidi
et al. in Section IV. Section V introduces the basic insights
behind the proof and gives a sketch of the proof. In Section VI
the proofs are presented with the help of various lemmas. We
give an outline of the proofs,whereas the detailed proofs can
be found in [1]. Finally, we conclude with a few possible
directions in Section VII.

II. RELATED WORK

Frank and Strauss in [2] proposed Markov graphs as a fam-
ily of random graphs parametrized over the subgraph counts
of stars and triangles. More specifically, given a fixed number
of nodes, non-incident edges are independent conditional on
the rest of the graph. Wasserman and Pattinson [3] extended
the modelling to subgraph counts of general graphs. Based on
this model several empirical level results has been produced
applying Markov chain algorithms based on parameter values.
Discussions can be found in [4]. The study on mixing time of
graphs with only stars and triangles can be found in the works
by Mark Newman et al. [5]. The paper by Shankar Bhamidi
et al. [1] presents an extensive study in the mixing time of the
generic model.

III. EXPONENTIAL RANDOM GRAPHS: MODEL AND
CHARACTERIZATION

In this section we formally present the model for exponen-
tial random graph and the MCMC techniques involved. The
different phases of the model is defined in this section which
will help characterize the mixing in these graphs.

A. Notation

Gn is the space of all graphs with n vertices and vertex
set [n] := 1, 2, ..., n. Any graph X ∈ Gn is given by the
vector (xe), ∀ e = (i, j) where xe = 1(e ∈ X). Denote,
Xe+ = X ∪ {e} and Xe− = X \ {e}. Let SX(m) be the set
of all possible subgraphs of X with m vertices and Y ∼= G
mean, Y contains G.

Given a graph G with m vertices define the following
subgraph counts.
The subgraph count of G in X

NG(X) = |{Y : Y ∈ SX(m) ∧ Y ∼= G}| .



The subgraph count of G in X ∪ {e} containing {e}

NG(X, e) =
∣∣{Y : Y ∈ SX∪{e}(m) ∧ Y ∼= G}

∣∣ .
The subgraph count of G in X ∪ {e, e′} containing {e, e′}

NG(X, e, e
′
) =

∣∣∣{Y : Y ∈ SX∪{e,e′}(m) ∧ Y ∼= G}
∣∣∣ .

B. Gibbs Measure

We define the probability measure on the space Gn as
follows.
Fix s ≥ 1 and fix “desired” structures G1, G2, ..., Gs with
Gi(Vi, Ei) as undirected graphs and max |Vi| ≤ L. By
convention G1 is a single edge. The vector β = {βi}s1 ∈ B is
the parameter for the model, where B = R× Rs−1++ .

Definition For G1, G2, ..., Gs and β as above, the Gibbs
measure in the space Gn is defined as the probability measure

pn(X) =
1

Zn(β)
exp

(
s∑
1

βi
NGi (X)

n|Vi|−2

)
X ∈ Gn.

Here Zn(β) is the partition function and note that the scaling
by n|Vi|−2 makes the contribution of Gi of the order n2 ∀i.

The term in the exponent is refered as the Hamiltonian

H(X) =

s∑
1

βi
NGi (X)

n|Vi|−2
.

Note that H(X) : {0, 1}(
n
2) → R+ is a function of all the

edge indicators, X(e). Using Fourier decomposition over the
basis functions Πe∈SX(e), where S is any subset of edges,
we have the decomposition

H(X) = Ae(X) +Be(X).

Here, Ae(·) consists of all terms dependent of edge e and
Be(·) denotes all independent terms. Furthermore, we have
∂eH(X) = Ae(Xe+).

C. Glauber Dynamics and Local Chains

Glauber dynamics is one of the many ways of defining a
Markov chain given a state space.

Definition The Glauber dynamics is a ergodic reversible
Markov chain defined on Gn with stationary probability pn(·)
and the following transitions,
Given current state X ,

1) choose an edge e, uniformly at random,
2) move to next state X

′
= Xe±

w.p. proportional to pn(Xe±).
Call a chain on Gn Local chain if O(n) edges (following
Glauber dynamics) are updated in one step.

We also give the definition of mixing time here for the sake
of completeness.

Definition For Markov chain the mixing time tmix(ε) is the
number of steps required to guarantee that the chain, starting

from any arbitrary state, is within total variation distance ε
from the stationary distribution.

The value of ε is generally taken to be e−1 or 1/4. We consider
ε = o(1) to show mixing.

Lemma III.1 ([1]). Given that we choose edge e to update, the
probability of the transition X ↪→ Xe+ is exp(∂eH(X))

1+exp(∂eH(X)) and
the probability of the transition X ↪→ Xe− is 1

1+exp(∂eH(X)) .

D. Phases in Exponential Random Graphs

With the above definitions, for a fixed β define,

Ψβ(p) =

s∑
i=1

2βi|Ei|p|Ei|−1

ϕβ(p) =
exp (Ψβ(p))

1 + exp (Ψβ(p))

Note that Ψβ is smooth over p ∈ [0, 1]. Further, ϕβ(0) > 0
and ϕβ(1) < 1 implies ∃p∗ ∈ (0, 1) such that ϕβ(p∗) = p∗.
We denote p∗ as a fixed point of ϕβ(p). We use ϕβ(p) and
ϕ(p) interchangeably in the rest of the paper.

1) High temperature phase: An exponential random graph
is in the high temperature phase if β ∈ BH . Where BH ⊆ B,

BH = {β|∃! p∗ s.t. 0 < ϕ
′

β(p∗) < 1}.

2) Low temperature phase: An exponential random graph
is in the low temperature phase if β ∈ BL. Where BL ⊆ B,

BL = {β|∃ min two p∗ s.t. 0 < ϕ
′

β(p∗) < 1}.

3) Critical phase: An exponential random graph is in the
critical phase if β /∈ BH∪BL. This happens if one of the fixed
point is also an inflection point of ϕ(p). That are specifically
(s− 1)-dimensional manifold in the intersection of closure of
BH and closure of BL.

IV. RESULTS: MIXING TIME BOUNDS AND
ASYMPTOTIC INDEPENDENCE OF EDGES

The first two results show that high and low temperature
phases determine the mixing time with local chains.

Theorem IV.1 (High Temperature [1]). If ϕ(p) is in the
high temperature regime then the mixing time of the Glauber
dynamics is Θ

(
n2 log n

)
.

Theorem IV.2 (Low Temperature [1]). If ϕ(p) is in the
low temperature regime then the mixing time of the Glauber
dynamics is eΩ(n). Furthermore, this holds not only for
Glauber dynamics but for any local dynamics on Gn.

Theorem IV.3 (Asymptotic Independence of Edges [1]). Let
X be drawn from the exponential random graph distribution
in the high temperature phase. Let e1, ..., ek be an arbitrary
collection of edges with the associated indicator random
variables xei = 1 (ei ∈ X). Then for any ε > 0, there is an
n such that for all(a1, ..., a2) ∈ {0, 1}k the random variables
xe1 , ..., xek satisfy∣∣∣P(x1 = a1, ..., xk = ak)− (p∗)

∑
ai(1− p∗)k−

∑
ai
∣∣∣ ≤ ε

n|V |
.



This theorem shows in high temperature phase though
sampling is possible, the exponential random graph behaves
similar to Erdős-Rényi graph, G(n, p∗).

V. PROOF INTUITION AND OUTLINE

In this section we present the importance of the phases in
mixing time, through the motivation derived from Erdős-Rényi
model. Next with this intuition we give a brief outline for the
proof of main results.

A. Insights through Erdős-Rényi model

The function defining the phases in the exponential random
graph have the motivation that if we choose X from G(n, p)

then all the edge update probabilities exp(∂eH(X))
1+exp(∂eH(X)) are ap-

proximately ϕ(p).
Assume our initial choice is from some G(n, pinit). Note if

pinit = p∗ the edge update process given by Glauber dynamics
is same as the edge update process in G(n, p∗) with high
probability. Additionally, if we have ϕ

′
(p∗) < 1, observe that

starting from pinit = p∗ + ε results in ϕ(p∗ + ε) < p∗ + ε
for small ε > 0. This means after a single step of Glauber
dynamics X

′
becomes more like G(n, p∗). Similar result holds

true for pinit = p∗ − ε, as well. This gives a drift towards the
fixed points with ϕ

′
(p∗) < 1. On the contrary, if we have

ϕ
′
(p∗) > 1 then we can observe a drift away from the fixed

point p∗. Call these type of fixed points, unstable points and
the previous ones, stable points.

Furthermore, if β is not in the critical phase then the stable
and unstable points occur alternatively. Therefore, (intuitively)
if we start in between two unstable points, we will drift
towards the stable point in the interior of these two points.
Therefore, the unstable points divide the interval [0, 1] into
modes. Specifically, in high temperature there exists one such
mode which gives some implication of fast mixing as well
as the similarity to G(n, p∗). Whereas in low temperature the
existence of multiple such modes lead to slow mixing.

Next we give a notion of closeness of a random graph X
to certain G(n, p). Define

rG(X, e) =

(
NG(X, e)

2|E|n|V |−2

) 1
|E|−1

.

This is (asymptotically) the maximum likelihood choice for
parameter p of G(n, p), having observed NG(X, e) subgraphs
of G containing the edge e. Further define for each fixed point

G = {X : rG(X, e) ∈ (p∗ − ε, p∗ + ε); ∀G ∈ Gλ, e ∈ E}

where {Gλ} is the set of all graphs with at most L vertices.
Observe, if X ∈ G, for ε small enough X ∼ G(n, p∗)
approximately.

B. Proof outline

Here we present a sketch of the proofs of main results with
the motivation presented in the previous section.
• We first show that for any G ∈ {Gλ} and edge e, the

Glauber dynamics produce drift in the variables rG(X, e)
from [p0 + µ, p1 − ε] and [p1 + ε, p2 − µ] towards

[p1− ε, p1 + ε] where p0, p2 are unstable points and p1 is
the stable point in the interior for any ε, µ > 0. We call
the initial phase Burn-in period, when the rG(X, e) are
not contained in G with high probability (w.h.p.).

• Next we prove that in Burn-in period we achieve o(1)
drift in O(n2) steps w.h.p. Further, once some rG(X, e)
is inside G it can be shown that the flow outside this
region is exponentially slow, i.e. e−Ω(n).

• Taking into consideration the monotonicity of the Gibbs
measure we have standard monotone coupling in the state
space. With the technique of path coupling [6] we show
that fast mixing occurs in high temperature phase.

• In low temperature phase, we have multiple modes each
with their own region G. Now using the fact the flow out
of G is exponentially small we use a known conductance
bound to show exponential mixing in this phase.

• Finally using the containment of the variables rG(X, e)
inside G, we can prove the asymptotic independence of
edges in high temperature phase.

VI. PROOF OF MAIN RESULTS

In this section we first introduce the necessary lemmas to
prove the main results. Then we give the proofs of main results
as an outline highlighting the key points. For detailed proofs
refer to [1].

A. Subgraph Counts

We present a few simple lemmas on subgraph count.

Lemma VI.1 ([1]). Consider the complete graph on n ver-
tices, Kn. We have,

NG(Kn) =

(
n

|V |

)
|V |! ∼ n|V | ,

NG(Kn, e) = 2|E|
(
n− 2

|V | − 2

)
(|V | − 2)! ∼ 2|E|n|V |−2 ,∑

e6=e
′

NG(X, e, e
′
) = (|E| − 1)NG(Kn, e)

∼ 2|E|(|E| − 1)n|V |−2 .

Lemma VI.2 ([1]). For an edge α in the graph G, let
Gα = G \ {α}. Then∑

e 6=e
′

NG(X, e, e
′
) =

∑
α(G)
α 6=e

NGα(X, e) .

B. Burn-in period

The key to the proofs is the containment of rG(X, e) in
G after a short time interval, burn-in period. From hereon,
X ≡ X(0) and rG(X, e) ≡ r(G, e). Define, rmax =
maxe,G∈Gλ rG(X, e) and rmin = mine,G∈Gλ rG(X, e).

Lemma VI.3 ([1]). The expected change in NG(X, e) after
one step of the Glauber dynamics, starting from any configu-
ration X, can be bounded as given in the equation (*).

E
(
NG(X(1), e)−NG(X(0), e)

n|V |−2

)
≤ (1 + o(1))

2(
n
2

) |E| (|E| − 1) [−r(G, e)|E|−1 + ϕ(rmax)(rmax)|E|−2]. (*)



Proof. After one step, starting from X(0)
E(NG(X(1), e)−NG(X(0), e))

= −
(
n
2

)−1
(|E| − 1)NG(X, e)

+
(
n
2

)−1∑
e′ 6=eNG(X, e, e

′
)P(Xe′ (1) = 1|e′updated).

The first part is the expected loss due to removing the
random edge e

′
and the second part is the expected gain from

adding the random edge e
′
. Using Lemma III.1, definition

of rmax and NG(X, e) = 2|E|n|V |−2r(G, e)|E|−1 the result
follows.

Lemma VI.4 ([1]). Let ϕ(p∗) = p∗, ϕ
′
(p∗) < 1 and p̄ be the

least solution greater than p∗, if such a solution exists, or 1
otherwise. Let starting from X(0) for some µ > 0, p∗ + µ ≤
rmax(X(0)) ≤ p̄−µ. Then ∃ δ, c > 0 depending only on µ,L
and ϕ so that after T = cn2 steps of the Glauber dynamics,
it holds that rmax(X(T )) ≤ rmax(X(0))− δ with probability
1− e−Ω(n).

Proof. The key idea is to couple each random variable
NG(X, e) with a biased random walk. Note for ϕ

′
(p∗) < 1

∃ε, δ > 0 such that for any r ∈ [p∗ + µ, p̄− µ− δ],

(r − 2δ)|E|−1 > ϕ(r + δ)(r + δ)|E|−2 + ε. (**)

Define events, Rt(G, e, δ) = {rG(X(t), e) ≥ rmax − 2δ},
At(δ) = {rmax(X(t)) ≤ rmax + δ} and the “appropriate”
edge statistics Dt(G, e, δ) = Rt(G, e, δ) ∩At(δ).

From Lemma VI.3 and equation (**), if rG(X(t), e) ∈
Dt(G, e, δ) then, for large n we have negative expected drift
of NG(X(t), e)

E
[
NG(X(t+ 1), e)−NG(X(t), e)

n|V |−2
1(Dt(e,G, δ))

]
≤ − γ

n2
.

Where, γ depends only on ϕ,δ and ε.
We claim the following about the event,

Bt1,t2(e,G, δ) = (∩t1≤t<t2 ∪e,G Dt(e,G, δ))∪
{rG(X(t2), e)− rG(X(t1), e) > δ/2}.

Claim VI.5 ([1]). The probability of the event
∪0≤t1<t2≤TBt1,t2(e,G, δ) is bounded

P (∪0≤t1<t2≤TBt1,t2(e,G, δ)) ≤ e−Ω(n)

Proof. Define a new random variable, St1,t2 , which is the sum
of the one step drift of NG(X(t), e) for t1 ≤ t < t2, with an
added bias of γ

2n2 . Precisely,

St1,t2 =

t2∑
t1+1

(
NG(X(t), e)−NG(X(t− 1), e)

n|V |−2
+

γ

2n2

)
· 1(Dt−1(e,G, δ)) .

For θ = cn and sufficiently small c > 0, we have

E
(
eθSt1,t2 |Ft2−1

)
≤ eθSt1,t2−1 .

For α < supx∈[p∗,1],G∈{Gλ}{(x + δ/2)|E|−1 − x|E|−1} ap-
plying Chernoff bound gives, P(St1,t2 ≥ α) ≤ e−Ω(n).

Now notice that Bt1,t2(e,G, δ) ⊆ {St1,t2 ≥ δ/2}. Finally
by applying union bound over t1 and t2 for T = poly(n)

P (∪0≤t1<t2≤TBt1,t2(e,G, δ)) ≤ T 2e−Ω(n)(1 + o(n)).

The probability of {rG(X(t), e) ≥ rmax − 2δ} for
1 ≤ t ≤ T is bounded as

P (rG(X(t), e) ≥ rmax − 2δ, 1 ≤ t ≤ T )

≤ P

(
S1,T ≥ −1 +

Tγ

2n2

)
+ e−Ω(n) ≤ e−Ω(n).

In T ≥ 3n2

γ steps all the random variables rG(X(T ), e) reach
below rmax − 2δ w.h.p.

Claim VI.5 also shows that with probability e−Ω(n) the
event ∪1≤τ≤T {rG(X(τ), e) ≥ rmax + δ} occurs. Therefore,
applying Claim VI.5, conditioned on rG(X(t), e) < rmax−2δ
for some 1 ≤ t ≤ T , we have the bound

P(rG(X(T ), e) ≥ rmax − δ) ≤ e−Ω(n).

Applying union bound on G and e proves the lemma.

Corollary VI.6. In high temp ∃c, ε > 0 such that for all G, e,
for any X(0) = x and t ≥ cn2,

P (|r(X(t))− p∗| ≥ ε |X(0) = x) ≤ e−Ω(n)

Corollary VI.7. In low temp for ϕ
′
(p∗) < 1, ∃ ε, α > 0 such

that for all G, e and for X(0) with |r(X(0)− p∗| ≤ ε,

P

(
sup

0<t<eαn
|r(X(t))− p∗| ≥ 2ε |X(0) = x

)
≤ e−Ω(n)

C. Proof of lower bound on mixing time (Theorem IV.2) [1]

We apply a known conductance bound to give a lower bound
on the mixing time in low temperature phase.

Lemma VI.8 ([7]). LetM be a Markov chain with state space
Ω, transition probability matrix P and stationary distribution
π. Let A ⊂ Ω with π(A) ≤ 1

2 and B ⊂ Ω be the “barrier”
such that Pij = 0 ∀i ∈ A \ B, j ∈ Ac \ B.Then the mixing
time tmix ≥ π/8π(B).

We define the space Ω = Gn. The transitions, pij , are
defined according to the Glauber dynamics and the stationary
distribution π is given by the Gibbs measure.

In low temperature, ∃p1, p2 and ε > 0 such that ϕ(pi) = pi
and ϕ

′
(pi) < 1 and ϕ(p) > p for p ∈ [pi − 3ε, pi), ϕ(p) < p

for p ∈ (pi, pi + 3ε) for i ∈ {1, 2}. Further, define the sets
Ai = {X : |r(X) − pi| ≤ ε} for i ∈ {1, 2} and without loss
of generality assume π(A1) ≤ 1

2 .
Observe that rmax and rmin can have O(1/n) change by

one edge update. Therefore, for local chains, i.e. o(n) edge
updates, the set B = {X : p1 + ε < rmax(X) ≤ p1 + 2ε ∨
p1 − ε > rmin(X) ≥ p1 − 2ε} forms a “barrier” for A1.
Denote, A = A1.



For C = Ac \B and t = cn2 we have from Lemma VI.4

P(X(t) ∈ C|X(0) ∈ B) = e−Ω(n),

P(X(t) ∈ B|X(0) ∈ A ∪B) = e−Ω(n).

Drawing X(0) according to π we have X(t) ∼ π. Therefore,

π(B) = P(X(t) ∈ B,X(0) ∈ C)

+ P(X(t) ∈ B,X(0) ∈ A ∪B)

= e−Ω(n)(π(B) + π(A ∪B))

≤ e−Ω(n)(π(A) + 2π(B)).

Through simple algebra and application of Lemma VI.8 we
get tmix ≥ π(A)

8π(B) ≥ e
Ω(n).

D. Proof of upper bound on mixing time (Theorem IV.1) [1]

We begin the proof with a lemma showing the negative drift
using monotone coupling.

Lemma VI.9 ([1]). Let p∗ ∈ [0, 1] be a solution to ϕ(p) = p
and ϕ

′
(p∗) ∈ (0, 1). Suppose that X+(0) ≥ X−(0) and they

differ in exactly one edge e. There exists ε, δ > 0 such that if
∀G ∈ {Gλ} and ∀e′ ∈ E(G), |r(G, e′)− p∗| < ε holds, then
for large enough n, a single step of Glauber dynamics can be
coupled such that EdH(X+(1), X−(1)) ≤ 1 − δn−2, where
dH is the Hamming distance.

Proof. Take the standard monotone coupling. Choose e
′
,

which is to be updated by the Markov chain, uniformly at
random.

First we give the following bounds,

∂e′H(X±(0)) ≤ 1

n|Vi|−2

s∑
i=1

βi(p
∗ + ε)|Vi|−2Ni(Kn, e

′
),

(1− o(1))Ψ(p∗ − ε) ≤ ∂e′H(X±(0)) ≤ Ψ(p∗ + ε),∑
e′ 6=e

∂e∂e′H(X+(0)) ≤ (1 + o(1))Ψ
′
(p∗ + ε). (#)

The first bound uses the monotonicity of the Gibbs measure
and the other bounds follow in the same line.

Further, using the Lemma III.1 and observing that
∂e′H(X−(0) = ∂e′H(X+(0))− ∂e∂e′H(X+(0)), we have

P(X+
e′

(1) = 1)−P(X−
e′

(1) = 1)

≤ (1 + ε
′
)(1 + o(1))∂e∂e′H(X+(0))Ψ

′
(p∗ + ε)ϕ

′
(p∗).

(##)

Using the equations (#),(##) for sufficiently small ε, ε
′

we
obtain the following inequality,

EdH(X+(1), X−(1)) ≤

1−
(
n

2

)−11−
∑
e′ 6=e

(
P(X+

e′
(1) = 1)−P(X−

e′
(1) = 1)

)
≤ 1−

(
n

2

)−1 (
1− (1 + ε

′′
)(1 + o(1))ϕ

′
(p∗)

)
The results hold since ϕ

′
(p∗) < 1 (necessary condition).

Next consider the monotone coupling starting from
X+(0) = Kn and X−(0) empty. Define
At = {|r(G, e)−p∗| < ε},∀ G, e}. Note from Corollary VI.6
for t ≥ cn2, P(At) ≤ 1−e−Ω(n). Due to the monotonicity of
Gibbs measure given d = dH(X+(t), X−(t)) and the event
At holds for X±(t), there exists a sequence

X−(t) = X0 ≤ X1 ≤ · · · ≤ Xd = X+(t),

with, 1) dH(Xi+1, Xi) = 1 and 2) At holds for Xi, ∀i.
We have the following bound on the expected dH at (t+1),

E[dH(X+(t+ 1), X−(t+ 1))]

≤ (1− δn−2)dH(X+(t), X−(t)) +

(
n

2

)
e−Ω(n). (+)

The first part is due to path coupling on the given sequence and
Lemma VI.9, whereas the second part is due to dH(X,Y ) ≤(
n
2

)
for any X,Y ∈ Gn.

Iterating the equation (+) till t
′

= Cn2 and substituting
t > 2+ε

′

γ n2 log n we have E[dH(X+(t), X−(t))] = o(1).
Further application of Markov’s inequality gives
P(X+(t)−(t)) = o(1). Consequently, the mixing time is
bounded by 2+ε

′

γ n2 log n.

E. Proof of asymptotic independence of edges
(Theorem IV.3) [1]

Fix an ε > 0. Choose any subset of edges from the chosen
k edges. Formally, let S ⊆ [k], xS = {xei : i ∈ S} and
xSc = {xei : i ∈ [k] \ S}. From inclusion and exclusion
principal

P(xS = 1, xSc = 0) =
∑

T⊆[k]\S

(−1)|T |P(xS∪T = 1).

We claim for sufficiently large n,
|P(xS∪T = 1)− (p∗)|S∪T || ≤ ε

n|V |
. Therefore,∣∣∣∣∣∣

∑
T⊆[k]\S

(−1)|T |
(
P(xS∪T = 1)− (p∗)|S∪T |

)∣∣∣∣∣∣ ≤ ε

n|V |

The proof follows from the equality∑
T⊆[k]\S

(−1)|T |(p∗)|S∪T | = (p∗)|S|(1− p∗)k−|S|.

The above claim can be proved along the following line.
For ε

′
small enough, define

A =
{
X : rmax(X) ≤ p∗ + ε

′

max(X) ≥ p∗ − ε
′
}
.

Through some combinatorial arguments we can show for∣∣P(xT = 1|X ∈ A)− (p∗)|T |
∣∣ ≤ ε

n|V |
. Next recalling for

high temperature (single mode) we have P(A) = 1 − o(1)
and so follows the claimed result.



VII. CONCLUSION

The discussed work in [1] gives some basis for criticisms
of the exponential random graph model. In high temperature,
where fast mixing occurs, the model fails in capturing the
clustering in real networks. Whereas, in low temperature,
where it has the potential to model clustering, any local
dynamics fail to give fast mixing. Having said that, we would
like to point out for multi-modal distributions such as this,
there are other MCMC techniques, e.g. Metroplis coupled
MCMC, simulated tempering [8], [9], which have the potential
to give overall fast mixing.

REFERENCES

[1] S. Bhamidi, G. Bresler, and A. Sly, “Mixing time of exponential random
graphs,” in Foundations of Computer Science, 2008. FOCS’08. IEEE 49th
Annual IEEE Symposium on. IEEE, 2008, pp. 803–812.

[2] O. Frank and D. Strauss, “Markov graphs,” Journal of the american
Statistical association, vol. 81, no. 395, pp. 832–842, 1986.

[3] S. Wasserman and P. Pattison, “Logit models and logistic regressions for
social networks: I. an introduction to markov graphs andp,” Psychome-
trika, vol. 61, no. 3, pp. 401–425, 1996.

[4] T. A. Snijders, “Markov chain monte carlo estimation of exponential
random graph models,” Journal of Social Structure, vol. 3, no. 2, pp.
1–40, 2002.

[5] M. E. Newman, “Assortative mixing in networks,” Physical review letters,
vol. 89, no. 20, p. 208701, 2002.

[6] R. Bubley and M. Dyer, “Path coupling: A technique for proving rapid
mixing in markov chains,” in Foundations of Computer Science, 1997.
Proceedings., 38th Annual Symposium on. IEEE, 1997, pp. 223–231.

[7] M. Dyer, A. Frieze, and M. Jerrum, “On counting independent sets in
sparse graphs,” SIAM Journal on Computing, vol. 31, no. 5, pp. 1527–
1541, 2002.

[8] D. B. Woodard, S. C. Schmidler, and M. Huber, “Conditions for rapid
mixing of parallel and simulated tempering on multimodal distributions,”
The Annals of Applied Probability, pp. 617–640, 2009.

[9] G. Altekar, S. Dwarkadas, J. P. Huelsenbeck, and F. Ronquist, “Parallel
metropolis coupled markov chain monte carlo for bayesian phylogenetic
inference,” Bioinformatics, vol. 20, no. 3, pp. 407–415, 2004.


