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Multi	Armed	Bandit
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All	images/clip	arts	are	taken	from	open	sourced	websites
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How	do	you	game	the	system?
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Blocking	Bandits

All	images/clip	arts	are	taken	from	open	sourced	websites
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Blocking	Bandits	Model

1 2 KArms:

Mean	Rewards: 𝜇" 𝜇# 𝜇$
Fixed	Delays: 𝐷" 𝐷# 𝐷$…

…

…

Each	time	arm	𝑖 is	played,	arm	𝑖	is	
blocked for	the	next	(𝑫𝒊 − 𝟏) time	steps

𝜇/ unknown
𝐷/ known
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Objective:Maximize	the	expected	reward	in	T	time	slots

𝑈𝑛𝑖𝑡	𝐷𝑒𝑙𝑎𝑦: ∀𝑖, 𝐷/ = 1 ≡Multi	armed	bandit	problem



Applications: Job	scheduling	with	Maximum	QoS

• Arms	are	servers/machines	
• Each	timeslot	one	task	arrives
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• Server	𝑖	has	processing	time	𝐷/ (Service	time	varies	across	servers)
• Server	𝑖 provide	quality	of	service	(QoS)	𝜇/
• Tasks	are	homogeneous
→ Identical	QoS distribution,	and	processing	time	for	individual	user



Applications:	Ad	Placement	with	Gap	Constraint

• Arms	are	users/subscribers
• Each	timeslot	one	ad	needs	to	be	placed
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• User	𝑖	has	a	gap	constraint	of	𝐷/ (Avoid	annoyance)
• User	𝑖 has	a	mean	click	through	rate	(CTR)	of	𝜇/
• Ads	are	homogeneous	
→ Identical	CTR		distribution	and	gap	for	individual	user

Other	applications:	
- Homogeneous	Product	recommendation
- Point	to	point	shuttle	service	



Off-the-Shelf	Solutions

• Combinatorial	Semi-Bandits	
- Take	decisions	for	a	block	of	time	and	observe	all	rewards	in	each	block
- Approaches	[Y.	Gai et	al.	12,	B.	Kveton et	al.	14,	…]
- Block	length	=	𝑙𝑐𝑚({𝐷/: 	𝑖	 = 	1	𝑡𝑜	𝐾})
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Existing	Methods	are	
Computationally	Intractable!• Online	Markov	Decision	Processes	

- Markov	chain	with	known	transition	and	unknown	stochastic	reward
- Approaches	[P.	Auer	et	al.	07,	A.	Tewari et	al.	 08,	G.	Neu et	al.	 09,	A	Zimin et	al.	13,…]
- State	Space		=		∏ 𝐷/�

/∈[$] ,	Horizon	=	𝑙𝑐𝑚({𝐷/: 	𝑖	 = 	1	𝑡𝑜	𝐾})



Offline	Optimization	Problem:	Formulation	

• The	mean	rewards	of	the	arms	(𝝁𝒊) are	known	
• 𝒂𝒕: Selected	arm	at	time	𝑡
• Blocking	Constraint:	

• Optimal	Expected	Reward: OPT = max
{RS:	TUV}	

W.T. ∗ 	Z[\]W	

∑ 𝜇RS	
V
T_" 	
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∀𝒊,𝒎𝒊𝒏 𝒕 − 𝒕b : 𝒕, 𝒕b ≤ 𝑻, 𝒂𝒕 = 𝒂𝒕e = 𝒊 ≥ 𝑫𝒊		(∗)

Combinatorial	optimization	problem	across	timeslots



Offline	Optimization	Problem:	Hardness	

• Optimal	Expected	Reward: OPT = max
{RS:	TUV}	

W.T. ∗ 	Z[\]W	

∑ 𝜇RS	
V
T_" 	
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Computationally	as	“Hard”	as	Dense	PINWHEEL	Scheduling
“Hard”:	NO	pseudo-polynomial	time	algorithm	under	randomized	Exponential	Time	Hypothesis

Result	1



Offline	Optimization	Problem:	Approximation

• Example	1: Greedy-Reward	vs	Optimal	
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Arm 𝝁𝒊 𝑫𝒊
1 1 4

2 1 4

3 0.9 2

4 0.1 1

1 2 3

Only	Arm	4	available

4 1 2 3 4

3 1 3 2 3 1 3 2 Order	Matters	
Start	with	3

Greedy

Optimal Greedy-(Reward/Delay)

There	exists	an	instance	where	Greedy-Reward	obtains	3/4	of	the	Optimal	Reward	
Make	reward	of	Arm	4	close	to	0	and	reward	of	Arm	3	close	to	1	

Reward:			𝟑	𝒇𝒍𝒐𝒐𝒓 𝑻
𝟒
	+ 	𝑶(𝟏)

Reward:			2.9	𝒇𝒍𝒐𝒐𝒓 𝑻
𝟑
	+ 	𝑶(𝟏)



Offline	Optimization	Problem:	Approximation

• Example	2: Greedy-Reward/Delay	vs	Optimal
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Arm 𝝁𝒊 𝑫𝒊
1 1 K-1

… …

K-1 1 K-1

K 0.1 1

K K K K K KGreedy

1 … K-1 1 … K-1Optimal

There	exists	an	instance	where	Greedy-(Reward/Delay)	obtains	O(1/K)	of	the	Optimal	Reward	
Make	reward	of	Arm	K	close	to	1/K	

Reward:			𝟎. 𝟏	𝑻

Reward:		𝑻

Greedy-(Reward/Delay)	is	
Arbitrarily	bad



Offline	Optimization	Problem:	Approximation

• LP	Based	Upper	Bound	on	OPT:	
• Let	the	arms	be	sorted:		1 ≥ 𝜇"≥ 𝜇# ≥ 	… ≥ 𝜇$ ≥ 0	
• Arm	𝑖 can	be	played	at	most	𝒄𝒆𝒊𝒍(𝑻/𝑫𝒊)many	times
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Greedy-Reward	obtains	at	least	((1-1/e)	OPT	– O(1))	reward Result	2
OPT	=	𝚯(𝐓)

• LP:	max
vw

	∑ 𝑛/𝜇/$
/_" , 𝑠. 𝑡. 0 ≤ 𝑛/ ≤ 𝑐𝑒𝑖𝑙 V

yw
	∀𝑖 ∈ [𝐾]	

• Let		𝐾∗ = min{𝑖: ∑ 1/𝐷|/
|_" ≥ 1}	

𝑂𝑃𝑇 ≤�𝜇/𝑐𝑒𝑖𝑙(𝑇/𝐷/)
$∗

/_"



Offline	Optimization	Problem:	Approximation
• Greedy-reward	plays	the	best	available	arm	in	each	time	slot
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1 1 1 Arm 𝝁𝒊 𝑫𝒊
1 1 4

2 1 4

3 0.9 2

4 0.1 1

1 2 3 4 1 2 3 4 1 2 3Greedy-Reward

1 2 1 2 1

1 2 3 1 3 2 1 3

1 2 3 4 1 3 2 4 1 3 4

• Lower	Bound	on	Greedy-Reward	(Iterative	Periodic):	
• Periodically	place	the	current	best	arm	and	delete used time	slots	



Offline	Optimization	Problem:	Approximation
• Lower	Bound	on	Greedy-Reward	(contd.):	

• Arm	𝑖 can	be	used	at	least		 �
��
∏�_"
/�" 1 − "

y�
- O(1)	times	(induction	on	i)
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• Approximation	Guarantee:	
• Lower	bound:	Min	����]�	�[���	�[�v]

��	�����	�[�v]
over	𝜇/, 𝐷/

• Subject	to:		1 ≥ 𝜇"≥ 𝜇# ≥ 	… ≥ 𝜇$ ≥ 0 and	𝐷/ ≥ 1	∀𝑖

Greedy-Reward	≥ ∑ 𝝁𝒊
𝑻
𝑫𝒊
∏𝐣_𝟏
𝒊�𝟏 𝟏 − 𝟏

𝑫𝒋
$
/_" 	 - O(1)



Online	Learning:	𝛼 Regret

• The	mean	rewards	𝜇/ are	unknown	
• How	learning	affects	the	reward?	
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𝛼	Regret = 𝛼	𝑂𝑃𝑇	 − 𝔼[∑ 𝜇RS
V
T_" ]

• O(log(T))	regret	w.r.t.	Greedy-Reward	≡ O(log(T))		(1 − 1/𝑒)𝑅𝑒𝑔𝑟𝑒𝑡

• Regret	notion	used	in	combinatorial	bandits	
[V.	Dani	et	al.	2008,	W	Chen	et	al.	2013,	…]



Online	Learning:	Greedy-UCB-Reward

• 𝑁/ 𝑡 :	Number	of	times	arm	𝑖 played	upto	time	t
• 𝜇/� 𝑡 :	 Empirical	average	reward	of	arm	𝑖 played	upto	time	t

• UCB-Reward¡(𝑡) =	𝜇/� 𝑡 + ¢	\[£T
¤w T

�
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Each	time	play	the	available	arm	with	highest	UCB-Reward



Online	Learning:	Ripple	Effect	of	Exploration

18

1 2 3 4 1 2 3 4 1 2 3Greedy-Reward

Greedy-UCB-Reward

• Explore	events decouples	Greedy-UCB-Reward	and	Greedy-Reward

Arm 𝝁𝒊 𝑫𝒊
1 1 4

2 1 4

3 0.9 2

4 0.1 1

Set	of	available	arms	for	Greedy-UCB-Reward	at	time	t
≠ Set	of	available	arms	for	Greedy−Reward	at	time	t

1 3 2 3 1 3 2 3 1 3 2



Online	Learning:	Action	Set	Equivalence
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• Equality	in	set	of	available	arms	in	each	time	step	used	in	regret	
analysis	of	UCB	like	algorithms	
Multi	Armed	Bandits:	P	Auer	et	al.	02,		Sleeping	Bandits:		R	Kleinberg	et	al.	10	,		
Combinatorial	Bandits:		W	Chen	13,	Combinatorial	Semi-Bandits:	B	Kveton 13

Sub-optimality	in	time	t	only	due	to	estimation	error	in	time	t

Sleeping	Bandits:	Arms	become	busy	(go	to	sleep)	but	independent	of	the	policy



Online	Learning:	Coupling	with	Greedy

20

𝑡/

𝑡/ + 𝐷/ − 1
𝑡/

Greedy-Reward

Greedy-UCB-Reward
Last	played

Becomes	
Available

• Strategy	in	absence	of	the	equality:	Couple	Each	Arm	Separately!

Bound	the		occurrences	
of	these	bad	events

Bad	Event:
Algorithm	play	
an	worse		arm	than	i



Online	Learning:	Free	Exploration

• If	arm	𝑖 is	available	a	worse	arm	is	played	at	time	t
• With	probability	at	most	𝑶(𝒕�𝜶), 𝛼	 > 	2,	for	j	> 𝐾∗	 (UCB	property)
• With	probability	at	most	𝑶(𝒆𝒙𝒑	(−𝒄𝒕))	for	j	∈ [𝑖 + 1, 𝐾∗] (Free	explore)
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Free	explore:	Due	to	blocking	of	higher	ranked	arms,	
each	arm	𝑖 ∈ 1, 𝐾∗ played	≥ 𝑐𝑇 times	up	to	time	T

If	Arm	1	has	delay	𝐷" 	= 	4	then	Arm	2	to	Arm	K	
is	played	(in	aggregate)		at	least	75%	of	time		

UCB	Property:	Each	arm	played	≥ 	𝑐’ log 𝑡 times	 𝜇/� 𝑡 +
2	𝑙𝑜𝑔𝑡
𝑁/ 𝑡

�

Specific	to	
our	problem



Online	Learning:	Regret	Bound
• 𝐾£=	The	highest	ranked	arm	played	by	Greedy-Reward

• 𝐾¯∗ = Lowest	ranked	arm	covering	 1 − "
¯

fraction	=	min 𝑗 ∶ ∑ "
yw

|
/_" ≥ 	1 − "

¯
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(1-1/e)-Regret = min
¯²³	

𝑂 "
¯
log "

¯
+ ´#$µ($�$¶∗)

·¡¸
w∈[¹¶∗ ,	…,	¹µ]

(ºw�ºw»¼)
log 𝑇

These	Gaps	
do	not		influence
the	regret	bound 𝜇$µ

𝜇$¶∗

𝜇"	 𝜇$	

Result	3

𝐾£ 𝐾 − 𝐾¯∗ ≤ min	 D·¾¿, K 	×	(K − (1 − 𝜖)D·¡¸)



1 months2 month2	months
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Blocking	Bandits

… …

Free	Exploration
All	images/clip	arts	are	taken	from	open	sourced	websites



Future	Directions
Improving	Guarantees:
• Incorporating	delays	𝐷/ to	beat	Greedy-Reward	(complexity	vs	gain)
• Improving	lower	bound	using	other	instances
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Model	Extensions
• Stochastic	Unknown	Delay
• Multi-type	Extension
- In	each	time	slot	an	i.i.d.	type	is	chosen	by	nature
- For	type	j,	arm	i has	delay	𝐷/| and	reward	𝜇/|
- Applications:	Heterogeneous	task	allocation,	ad	placement,	

recommendation,	Ride	sharing	platform	



Research	Overview
• Online	Learning:	(Design	simple	and	provably	near	optimal	algorithm)

• Blocking	Bandits,	Neurips 2019	
• Pareto	Optimal	Streaming	Unsupervised	Classification,	ICML	2019	
• Switching	Constrained	Max-weight	Scheduling,	Infocom 2019
• Adaptive	TTL-based	caching	for	content	delivery,	Sigmetrics 2017

• Mechanism	Design:	
• New	Complexity	results	and	Algorithms	for	Minimum	Tollbooth	Problem,	WINE	2015
• Reconciling	Selfish	Routing	with	Social	Good,	SAGT	2017

• ML	Optimization:
• Reconciling	Adaptive	Methods	for	Over-parameterized	Problems*

• Learning	Graphical	Models:
• Disentangling	Mixture	of	Epidemics	on	Graphs*
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*	Not	the	primary	author
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Thanks
Questions?



Offline	Optimization	Problem:	Hardness		

• Dense	PINWHEEL	SCHEDULING	(DPWS)	[R.	Holte et	al.	1989]

- K	Arms	with	Delay	𝐷/ for	arm	𝑖 and	∑ "
yw
�
/ =	1	(dense)

- Can	we	cover	1	to	T	timeslots	by	placing	the	K	arms?
“Hard”	to	decide	[T.	Jacobs	and	S.	Longo	2014]
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1 2 1 3 1 2 1 3 1

𝑫𝟏 = 𝟐,𝑫𝟐 = 𝟒,𝑫𝟑 = 𝟒

YES	Instance

• Reduction:
- DPWS	instance	with	Reward	=	1	for	each	arm	
- One	additional	arm	with	Reward	=	0	and	Delay	=	1

“Hard”:	
NO	pseudo-polynomial	algorithm
Unless	SAT	is	solvable	by	a	
randomized	algorithm	in	expected	
𝑂(𝑛ÄÅÆ	(v)ÄÅÆ	(ÄÅÆ	(v))) time	Is	OPT	=	T?	“Hard”	to	decide Result	1



Online	Learning:	Negative	Regret

• Example:	Greedy-UCB-Reward	performs	better	than	Greedy-Reward
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Arm 𝝁𝒊 𝑫𝒊
1 1 3

2 0.9 3

3 0.5 2

1 2 3 1 2 3 1 2 3Greedy-Reward

3 1 3 2 3 1 2 3 1 3 2Greedy-UCB-Reward

• If	the	following	event	occurs	(constant	probability	event)
UCB-Reward_3	>	UCB-Reward_1	>	UCB-Reward_2 Deadlock

Negative	Regret!



Online	Learning:	Regret	Lower	Bound
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lim
V→Ç

	Regret/	log(T)	≥	 	($�$È∗)
𝐦𝐢𝐧

𝒊∈[𝑲𝟎
∗ ,	…,	𝑲𝒈]

(𝝁𝒊�𝝁𝒊»𝟏)

• Setting:	∀	𝑖, 𝐷/ = 	𝐷	 and	Greedy-Reward	is	Optimal

• Lower	Bound	possible	only	because Greedy-Reward	is	optimal
• Follows	from	lower	bound	on	learning	best-K	arms	from	semi-bandit	feedback	

V.	Anantharam	1987


