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Blocking Bandits Model

Mean Rewards: Ui Uy
Fixed Delays: D1 D2

U; unknown
DK D; known

Each time arm i is played, arm i is
blocked for the next (D; — 1) time steps

Objective: Maximize the expected reward in T time slots

Unit Delay:Vi,D; = 1 = Multi armed bandit problem



Applications: Job scheduling with Maximum QoS

* Arms are servers/machines
e Each timeslot one task arrives

* Server i has processing time D; (Service time varies across servers)
* Server i provide quality of service (QoS) u;

* Tasks are homogeneous
— |dentical QoS distribution, and processing time for individual user



Applications: Ad Placement with Gap Constraint

* Arms are users/subscribers
* Each timeslot one ad needs to be placed
* User i has a gap constraint of D; (Avoid annoyance)
* User i has a mean click through rate (CTR) of y;
* Ads are homogeneous
— ldentical CTR distribution and gap for individual user

Other applications:
- Homogeneous Product recommendation
- Point to point shuttle service



Off-the-Shelf Solutions

e Combinatorial Semi-Bandits
- Take decisions for a block of time and observe all rewards in each block
- Approaches [Y. Gai et al. 12, B. Kveton et al. 14, ...]
- Block length =lcm({D;: i = 1to K})
Existing Methods are

' |
* Online Markov Decision Processes Computationally Intractable!

- Markov chain with known transition and unknown stochastic reward
- Approaches [P. Auer et al. 07, A. Tewari et al. 08, G. Neu et al. 09, A Zimin et al. 13,...]
- State Space = [];¢[x Dy, Horizon = lem({D;: i = 1to K})



Offline Optimization Problem: Formulation

* The mean rewards of the arms (u;) are known
* a,: Selected arm at time t
* Blocking Constraint:

Vimin{|t—t'|:t,t' <T,a; = a, =i} > D; ()
° 1 . — T
Optimal Expected Reward: OPT {altr:l?égr , =1 Uq,

s.t.(x) holds

Combinatorial optimization problem across timeslots



Oftline Optimization Problem: Hardness

° i . —_ T
Optimal Expected Reward: OPT = {aﬁr:l?sXT} Dit=1Ha,

s.t.(x) holds

Computationally as “Hard” as Dense PINWHEEL Scheduling Result 1

“Hard”: NO pseudo-polynomial time algorithm under randomized Exponential Time Hypothesis
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Offline Optimization Problem: Approximation

* Example 1: Greedy-Reward vs Optimal CArm | w | Dy
1 1 4
Only Arm 4 available 2 1 4
Greedy 1 p) 3 4 1 2 3 4 3 09 2
Reward: 3 floor G) + 0(1) 4 01 1

Order Matters
i - D

Reward: 2.9 floor (g) + 0(1)

There exists an instance where Greedy-Reward obtains 3/4 of the Optimal Reward

Make reward of Arm 4 close to 0 and reward of Arm 3 closeto 1
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Offline Optimization Problem: Approximation

* Example 2: Greedy-Reward/Delay vs Optimal CArm | | D

1 1 K-1
Reward: 0.1 T K 0.1 1

oJdlyFIM 1 ... K1 1 .. K1 Greedy-(Reward/Delay) is

Reward: T Arbitrarily bad

There exists an instance where Greedy-(Reward/Delay) obtains O(1/K) of the Optimal Reward

Make reward of Arm K close to 1/K
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Offline Optimization Problem: Approximation

Greedy-Reward obtains at least ((1-1/e) OPT — O(1)) reward Result 2

OPT = O(T)
* LP Based Upper Bound on OPT:

* Letthearmsbesorted: 1 ==, = ...2ug =0
* Arm i can be played at most ceil(T/D;) many times

* LP: maX > i, s.t.0<n; < cell(D) Vi € |K]

* Let K* = min{i: 11/D; = 1}

K
OPT < z uiceil(T /D;)
i=1
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Offline Optimization Problem: Approximation

* Greedy-reward plays the best available arm in each time slot

e Lower Bound on Greedy-Reward (lterative Periodic):
* Periodically place the current best arm and delete used time slots

1

X LivaivFl.ow 1 2 3 4 1 2 3 4 1 2 3
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Offline Optimization Problem: Approximation

* Lower Bound on Greedy-Reward (contd.):

 Arm i can be used at least —H (1 — —) O(1) times (induction on i)
D;

Greedy-Reward > Y& pu; — 5 H (1 — —) 0(1)

]

* Approximation Guarantee:
Greedy Lower Bound

* Lower bound: Min over u;, D;

LP Upper Bound
° SUbjECt to: 1> 1= Uy =2 ... 2 Ug = 0 and Di > 1Vi
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Online Learning: a Regret

* The mean rewards u; are unknown
* How learning affects the reward?

a Regret = a OPT — E[Y{- Ug,]

* Regret notion used in combinatorial bandits
[V. Dani et al. 2008, W Chen et al. 2013, ...]

* O(log(T)) regret w.r.t. Greedy-Reward = O(log(T)) (1 — 1/e)Regret
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Online Learning: Greedy-UCB-Reward

* N;(t): Number of times arm i played upto time t
* [1:(t): Empirical average reward of arm i played upto timet

N UCB-Rewardi(t) = l/l\l(t) T \/(Ejvliif)t)

Each time play the available arm with highest UCB-Reward
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Online Learning: Ripple Effect of Exploration

* Explore events decouples Greedy-UCB-Reward and Greedy-Reward

Set of available arms for Greedy-UCB-Reward at time t
#+ Set of available arms for Greedy—-Reward at time t

JEEWDVRN 1 2 3 4 1 2 3 4 1 2 3 NN Am| D
1 1 4

2 1 4
Greedy-UCB-Reward

3 09 2

4 1

0.1
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Online Learning: Action Set Equivalence

e Equality in set of available arms in each time step used in regret

analysis of UCB like algorithms
Multi Armed Bandits: P Auer et al. 02, Sleeping Bandits: R Kleinberg et al. 10,
Combinatorial Bandits: W Chen 13, Combinatorial Semi-Bandits: B Kveton 13

Sleeping Bandits: Arms become busy (go to sleep) but independent of the policy

Sub-optimality in time t only due to estimation error in time t
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Online Learning: Coupling with Greedy

 Strategy in absence of the equality: Couple Each Arm Separately!

Bad Event:
Algorithm play
an worse arm thanii

Bound the occurrences
of these bad events

Greedy-Reward

Last played

Greedy-UCB-Reward

Becomes i T D; =1

Available
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Online Learning: Free Exploration

e [farm i is available a worse arm is played at time t
* With probability at most O(t™%),a > 2,forj> K™ (UCB property)
* With probability at most O(exp(—ct)) forje€ [i + 1, K"] (Free explore)

2 logt)

UCB Property: Each arm played > c’log(t) times @@ + (N.(t)

Free explore: Due to blocking of higher ranked arms, ¢ 1o
eacharmi € [1,K"] played = ¢T times up to time T  our problem

If Arm 1 has delay D; = 4 then Arm 2 to Arm K
is played (in aggregate) at least 75% of time
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Online Learning: Regret Bound
* K;=The highest ranked arm played by Greedy-Reward

* K. = Lowest ranked arm covering (1 — %) fraction = min {j Yy 1> 1 1}

_ 32K (K—K:
(1-1/e)-Regret = min O (llog G)) + g ) log(T) Result 3

e>0 € _min  (Ui—Hi+1)
i€[Kg, ... Kg]
These Gaps Ui
do not influence
the regret bound i, Uy

K, (K — KZ) < min (Dpyax, K) X (K= (1 — €)Dpin)
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Blocking Bandits

2 months 2 month 1 months

Free Exploration
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Future Directions

Improving Guarantees:
* Incorporating delays D; to beat Greedy-Reward (complexity vs gain)
* Improving lower bound using other instances

Model Extensions
e Stochastic Unknown Delay

* Multi-type Extension
- In each time slot an i.i.d. type is chosen by nature
- For type j, arm i has delay D;; and reward y;;
- Applications: Heterogeneous task allocation, ad placement,
recommendation, Ride sharing platform
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Research Overview

* Online Lea rning: (Design simple and provably near optimal algorithm)

* Blocking Bandits, Neurips 2019

* Pareto Optimal Streaming Unsupervised Classification, ICML 2019
* Switching Constrained Max-weight Scheduling, Infocom 2019

* Adaptive TTL-based caching for content delivery, Sigmetrics 2017

* Mechanism Design:

* New Complexity results and Algorithms for Minimum Tollbooth Problem, WINE 2015
* Reconciling Selfish Routing with Social Good, SAGT 2017

* ML Optimization:
* Reconciling Adaptive Methods for Over-parameterized Problems”

* Learning Graphical Models:
* Disentangling Mixture of Epidemics on Graphs”

* Not the primary author
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Thanks

Questions?



Oftline Optimization Problem: Hardness

* Dense PINWHEEL SCHEDULING (DPWS) [R. Holte et al. 1989]
- K Arms with Delay D; forarm i and Zi% =1 (dense)

- Can we cover 1 to T timeslots by placing the K arms?
“Hard” to decide [T. Jacobs and S. Longo 2014]

1 2 1 3 1 p. 1 3 1
* Reduction: D,=2D,=4D;=4
- DPWS instance with Reward =1 for each arm “Hard”:

NO pseudo-polynomial algorithm

- One additional arm with Reward = 0 and Delay =1 ), jess saTis solvable by 2

randomized algorithm in expected

Is OPT = T? “Hard” to decide Result 1 0 (n1oEI0819B(M)Y time

YES Instance
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Online Learning: Negative Regret

* Example: Greedy-UCB-Reward performs better than Greedy-Reward

R

2 09 3

3 0.5 2
* If the following event occurs (constant probability event)

UCB-Reward_3 > UCB-Reward_1 > UCB-Reward_2 Deadlock

[yl R e 3 12 3 2 3 1 2 3 1 3 2 Negative Regret!
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Online Learning: Regret Lower Bound

* Setting:Vi,D; = D and Greedy-Reward is Optimal

(K—Ko)

_ min (Ui —Mit+1)
lE[KO, ) Kg]

Tlim Regret/ log(T) =

 Lower Bound possible only because Greedy-Reward is optimal
* Follows from lower bound on learning best-K arms from semi-bandit feedback
V. Anantharam 1987
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