Blocking Bandits
Soumya Basu#, Rajat Sen*, Sujay Sanghavi*,# and Sanjay Shakkottai#
#The University of Texas at Austin, *Amazon

Blocking Bandits Model

Arms: 1 2 ... K
Mean Rewards: μ_1 μ_2 ... μ_K
Fixed Delays: D_1 D_2 ... D_K

Each time arm i is played, arm i is blocked for the next $(D_i - 1)$ time steps

Objective: Maximize the expected reward in T time slots

Unit Delay: $\forall i, D_i = 1 \equiv$ Multi armed bandit problem

Applications

Job scheduling with Maximum QoS
- Arms are servers/machines
- Each timeslot one homogeneous task arrives
- Server i has delay D_i and quality of service (QoS) μ_i
 (Service time varies across servers)

Hard System Constraints on Inter Action Distance

Ad Placement with Gap Constraint
- Arms are users/subscribers
- Each timeslot one homogeneous ad needs to be placed
- User i requires a gap of D_i and mean CTR of μ_i
 (Avoid annoyance, engagement time)

Existing Approaches

Existing Methods are Computationally Intractable!

Combinatorial Semi-Bandits
- Take decisions for a block of time and observe all rewards
- Approaches [Y. Gai et al. 12, B. Kveton et al. 14, ...]
- Block length = lcm$(D_i: i = 1 to K)$

Online Markov Decision Processes (MDP)
- MDP with known transitions, unknown random reward
- Approaches [P. Auer et al. 07, A. Tewari et al. 08, G. Neu et al. 09, A Zimin et al. 13, ...]
- State Space = $\prod_{i \in [K]} D_i$, Horizon = lcm$(D_i: i = 1 to K)$

Offline Optimization

- The mean rewards of the arms (μ_i) are known
- Blocking Constraint: Each D_i blocks at most one play of arm i
- Optimal Expected Reward ($E[R]$) = $\max_{(\mu_i, \epsilon)} \sum_{t=1}^{T} \mu_{a_t}$

Combinatorial optimization problem across timeslots

Result 1: NO pseudo-polynomial time algorithm given randomized Exponential Time Hypothesis holds

Greedy Algorithm

At each time, Play the Available Arm with Highest μ_i

Bad News: There are instances where Greedy achieves $3/4$-th of the optimal reward

Result 2: Greedy is (1-1/e) Optimal

Online Optimization

- The mean rewards of the arms (μ_i) are unknown

α-Regret: ($\alpha \times E[R]$ of OPT - $E[R]$ of Online Alg)

UCB-Greedy Algorithm

At time t, Play the Available Arm with Highest $ucb_i(t)$

- Empirical mean of arm i at time t, $\tilde{\mu}_i(t)$
- Number of times arm i played at time t, $N_i(t)$
- UCB of arm i at time t, $ucb_i(t) = \tilde{\mu}_i(t) + \sqrt{\frac{2 \log(T)}{N_i(t)}}$

Synthetic Experiments

- Bernoulli Reward with Fixed Mean
- Greedy plays arm $1 \to K_g$
- $K^* = \min[i: \sum_{j=1}^{K_g} D_j^{-1} \geq 1]$

Performance Guarantees

- Sorted Means $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_K$, Gap $\Delta_{ij} = \mu_i - \mu_j$
- Greedy plays arm $1 \to K_g$
- Arms to cover $(1 - \epsilon)$, $K^*_\epsilon = \min[i: \sum_{j=1}^{K_g} D_j^{-1} \geq 1 - \epsilon]$

Result 3: (1-1/e)-Regret of UCB-Greedy equals

$O\left(\frac{1}{\epsilon} \log\left(\frac{1}{\epsilon}\right)\right) + \frac{32 K_g (K - K_g)}{\epsilon \min_{i=K_g+1}^{K} \Delta_{i,1}} \log(T)$

These Gaps do not influence the regret bound

Result 4: Lower Bound

$O\left(\frac{(K - K_g)}{\Delta_{K_g, K_g+1}} \log(T) + O(1)\right)$

Techniques: Coupling and Free Exploration

- Decision sets of Greedy and UCB-Greedy do not converge

Free explore: Due to blocking of higher ranked arms, each arm $i \in [1, K^*_\epsilon]$ played $\geq cT$ times up to time T

Future Work

- Stochastic Unknown Delay
- Multi-type Extension:
 In each time slot an i.i.d. type is chosen by nature.
 For each type j, arm i has delay D_{ij} and reward μ_{ij}

2 months