Switching Constrained Maxweight Scheduling for Wireless Networks

Soumya Basu

joint with Sanjay Shakkottai The University of Texas at Austin, USA

Motivation

Image credit: Ericsson

Motivation

- Dense deployment of base stations (BS) to support peak data traffic
- **Dynamic** activation and de-activation of BS to **optimize energy** usage
- Fast activation dynamics is used to serve the incoming data rate
- Fast activation dynamics leads to large switching overhead,

e.g. hand-offs, state exchange among BSs, and BS start-up costs

System Model

- Downlink time-slotted system with multiple BSs and Users
- Each BS has a separate queue for each connected user
- Cost of operation + switching: c₁(#Active BS) + c₀(#BS switch)

Example: 2 BS, 1 User

System Model

- 1. I.i.d. Arrival and Channel Realization
- 2. BS Activation (When to switch? What to switch to?)
- 3. Channel Observation from Active BS
- 4. Scheduling and Departure (What to Schedule?)

Problem Definition

• Performance Metrics: 'Asymptotic time average of expected ...'

- 1. Average Cost (Operational + Switching)
- 2. Average Queue Length
- 3. Queue Length Tail

Minimize	Average Cost
Subject to	Bounded Average Queue Length (Stability)
	Exponential decay in Queue Length Tail
	Over all Causal policies
	(A policy is causal iff it only depends on the history)

Fixed BS activation

- Capacity region for a fixed BS activation
 Set of arrival rate for which Stability is feasible
- What to schedule using active BSs? [Solved] [L. Tassiulas et al. '92] Static-split among Active BS-User matching Max-weight Active BS-User matching
- We focus on **BS Activation and Switching**

Optimal Activation

• Optimally time share between activations (I.i.d. BS activation)

Scope for Improvement

- Static activation is not adaptive to the queue lengths
 BS1 activated w.p. 0.2, even if Q1 Large and Q2 Small !
- Linear decay in queue length tail under Slow Markov Activation $\mathbb{P}(Sum \ of \ Queue \ lengths \ge x) \le \frac{c}{r}$
- Queue Dependent BS activation with constrained switching
- Prior works without constrained switching A Gopalan et al. '07, MJ Neely et al. '08, MJ Neely et al. '12

Queue Dependent BS Activation

Example: 2 BS 1 User

- Prioritize service for large queues greedily
 Drift(Channel, BS activation) := Sum of (Queue Length × Departure)
- Penalize BS activation for operational cost. **Penalty** := # Active BS
- Constraint Switching between activation
- Algorithm I (LASS-Static):

W.p. ϵ_{sw} Activate

ArgMax Expected (Drift – V × Penalty)

O/w: Stick to Previous BS activation

V: Penalty Scale ϵ_{sw} : Switching Rate

BS Activation Function

Drawback of Static Switching

lacksquare

- We start with BS2 ON
 - In points

 and
 switching of BSs is allowed
 - In Previous BS Subset = Best BS Subset No switching even though it is allowed Switching resource/opportunity is wasted
- In Previous BS Subset ≠ Best BS Subset
 We switch to Both ON from BS2 ON

Dynamic Switching

Algorithm II (LASS-Dynamic): Only differs in 'When to Switch?' Virtual Objects: Switch Queue and Switch Counter

- W.p. *e_{sw}* remove one packet from Switch Queue [Black dots in the plot]
- Current BS activation is not optimal: Increment Switch Counter [2 to 3]

Dynamic Switching

- BS switching when **Switch Counter** ≥ **Switch Queue** [3: Red Dot]
- BS switching: 1) Reset Switch Counter

2) Add packet to Switch Queue

Main Results

Parameters

- #BS: N # Users: M Capacity gap: $\epsilon_g > 0$
- Queue Length at time t: Q(t)
- Optimal cost without switching cost: C^*_{avg}
- Switching rate: ϵ_{sw} , Penalty scale: V (Tuning Knobs)

Time Average bounds

Both LASS-Static and LASS-Dynamic

$$Q_{avg} \leq O\left(\frac{C_{avg}^{*}}{\epsilon_{g}} + V + \frac{NM}{\epsilon_{g}\epsilon_{sw}}\right) \qquad C_{avg} \leq C_{avg}^{*} + O\left(\epsilon_{sw} + \frac{NM}{V\epsilon_{sw}}\right)$$
$$V \uparrow, \epsilon_{sw} \downarrow \Rightarrow Q_{avg} \uparrow, (C_{avg} - C_{avg}^{*}) \downarrow$$

Main Results

Tails Bounds

For large enough x and all time t

- For LASS Static: $\mathbb{P}(|Q(t)| \ge x) \le \exp(-\Theta(\epsilon_{sw}\epsilon_g)x) + O(\frac{\log(t)}{t})$
- For LASS Dynamic: $\mathbb{P}(|Q(t)| \ge x) \le \exp(-\Theta(\epsilon_g)x) + O(\frac{\log(t)}{t})$

Decay rate of LASS Static Depends on ϵ_{sw}

Simulation Results

- Three algorithms for 8 Users and 3 BSs simulated until convergence
- **DP**: **Drift + Penalty (Baseline** with NO Switching Cost)
- LSG: LASS Static
- LD: LASS Dynamic

Simulation Results

- First Plot: Q_{avg} of DP < LD < LSG (V = 100, load = 0.9)
- Second plot: C_{avg} of DP > LD \approx LSG (V = 100, ϵ_{SW} = 0.1)

Simulation Results

- Separation of queue length tail distribution
 - **DP < LD << LSG** (V = 100, load = 0.9)
 - Differences are more pronounced for smaller ϵ_{sw}

Thanks!

Step I: Arrival and Channel Realization

- Arrival and Channel process
 - $\circ~$ I.i.d. across time slots and possibly correlated in a time slot

Example: 2 BS 1 User

Step II: Base Station Activation

- Activate a subset of BSs
- Cost of operation + switching at time t

 $C(t) = c_1(\#Active BS) + c_0(\#BS \, switch)$

Green: Active Blue: Inactive $C(t) = c_1 + 2c_0$

Step III: Channel Observation

- Observe channel after activation
- Why? Probing channel requires energy

Step IV: Scheduling

'Active BS'- User matching

- Each user can connect to at most one BS
- Each BS can connect to at most one user

Switching Constrained Max-weight Scheduling Objective

Minimize cost subject to exponential decay

Minimize C_{avg}^{ϕ} Subject to: ϕ is a causal policy Exponential Decay: $\exists c > 0, \forall t$, large x $\mathbb{P}^{\phi}(|Q(t)|_1 \ge x) \le exp(-cx)$

System is stable :
$$Q_{avg}^{\phi} < \infty$$

Exponential Decay implies Stability

Switching Constrained Max-weight Scheduling How to Schedule?

Edge Weight (BS n, User m): If BS n is active: $Q_{nm}(t)H_{nm}(t)$ Otherwise: 0

Schedule the Max Weight Matching

Switching Constrained Max-weight Scheduling What to Switch to?

Drift+Penalty Method

Best BS Subset maximizes (Expected Weight(J) – V|J|)

Expected Weight(J) = $\sum_{h} \hat{\mu}_{h} M W_{h}(J)$

J : A BS subset $\hat{\mu}_h$: Channel Probability Estimates

 $MW_h(J)$: Value of Max-weight matching

- 1) BS Subset **J** is active
- 2) Channel state h occurs

Switching Constrained Max-weight Scheduling What to Switch to?

Best BS Subset Vs Queue Lengths

Switching Constrained Max-weight Scheduling What to Switch to?

 $J^*(t)$: Best BS Subset. The one to switch to.

Switching Constrained Max-weight Scheduling Drift Equation

Use Lyapunov Function: $|Q(t)|_1^2 + T(t)$