Switching Constrained Maxweight Scheduling for Wireless Networks

Soumya Basu
joint with Sanjay Shakkottai
The University of Texas at Austin, USA

Motivation

Motivation

- Dense deployment of base stations (BS) to support peak data traffic
- Dynamic activation and de-activation of BS to optimize energy usage
- Fast activation dynamics is used to serve the incoming data rate
- Fast activation dynamics leads to large switching overhead, e.g. hand-offs, state exchange among BSs, and BS start-up costs

System Model

- Downlink time-slotted system with multiple BSs and Users
- Each BS has a separate queue for each connected user
- Cost of operation + switching: $c_{1}(\#$ Active $B S)+c_{0}(\# B S$ switch $)$

Example: 2 BS, 1 User

System Model

1. I.i.d. Arrival and Channel Realization
2. BS Activation (When to switch? What to switch to?)
3. Channel Observation from Active BS
4. Scheduling and Departure (What to Schedule?)

Problem Definition

- Performance Metrics: 'Asymptotic time average of expected ...'

1. Average Cost (Operational + Switching)
2. Average Queue Length
3. Queue Length Tail

$$
\begin{array}{ll}
\text { Minimize } & \text { Average Cost } \\
\text { Subject to } & \text { Bounded Average Queue Length (Stability) } \\
& \text { Exponential decay in Queue Length Tail } \\
& \text { Over all Causal policies } \\
& \text { (A policy is causal iff it only depends on the history) }
\end{array}
$$

Fixed BS activation

- Capacity region for a fixed BS activation Set of arrival rate for which Stability is feasible
- What to schedule using active BSs? [Solved] [L. Tassiulas et al. '92]

Static-split among Active BS-User matching
Max-weight Active BS-User matching

- We focus on BS Activation and Switching

Capacity Region

Channel H1		
H2	1	0

- Capacity region of different BS activation

Example: 2 BS 1 User

Optimal Activation

- Optimally time share between activations (I.i.d. BS activation)

Energy Cost: 1 Switching Cost: 0.0064

- Switching cost driven to arbitrarily low values
- Slow Markov Activation + Max-weight Scheduling [S. Krishnasamy et al. '17]

Scope for Improvement

- Static activation is not adaptive to the queue lengths

BS1 activated w.p. 0.2, even if Q1 Large and Q2 Small !

- Linear decay in queue length tail under Slow Markov Activation

$$
\mathbb{P}(\text { Sum of Queue lengths } \geq x) \leq \frac{c}{x}
$$

- Queue Dependent BS activation with constrained switching
- Prior works without constrained switching A Gopalan et al. '07, MJ Neely et al. '08, MJ Neely et al. '12

Queue Dependent BS Activation

Example: 2 BS 1 User

- Prioritize service for large queues greedily Drift(Channel, BS activation) := Sum of (Queue Length \times Departure)
- Penalize BS activation for operational cost. Penalty := \# Active BS
- Constraint Switching between activation
- Algorithm I (LASS-Static):
W.p. $\boldsymbol{\epsilon}_{\boldsymbol{s w}}$ Activate

ArgMax Expected (Drift - V \times Penalty)

O/w: Stick to Previous BS activation

$$
\text { V: Penalty Scale } \quad \epsilon_{s w}: \text { Switching Rate }
$$

BS Activation Function

Drawback of Static Switching

Dynamic Switching

Algorithm II (LASS-Dynamic): Only differs in 'When to Switch?’ Virtual Objects: Switch Queue and Switch Counter

- W.p. $\boldsymbol{\epsilon}_{\boldsymbol{s w}}$ remove one packet from Switch Queue [Black dots in the plot]
- Current BS activation is not optimal: Increment Switch Counter [2 to 3]

Dynamic Switching

- BS switching when Switch Counter \geq Switch Queue [3: Red Dot]
- BS switching: 1) Reset Switch Counter

2) Add packet to Switch Queue

Main Results

- \# BS: N \# Users: M Capacity gap: $\epsilon_{g}>\mathbf{0}$

Parameters

- Queue Length at time t: $\boldsymbol{Q}(t)$
- Optimal cost without switching cost: $C_{a v g}^{*}$
- Switching rate: $\boldsymbol{\epsilon}_{\boldsymbol{s w}}$, Penalty scale: \boldsymbol{V} (Tuning Knobs)

Time Average bounds

Both LASS-Static and LASS-Dynamic

$$
\begin{gathered}
\boldsymbol{Q}_{a v g} \leq \boldsymbol{O}\left(\frac{C_{a v g}^{*}}{\epsilon_{g}}+V+\frac{N M}{\epsilon_{g} \epsilon_{s w}}\right) \quad C_{a v g} \leq C_{a v g}^{*}+O\left(\epsilon_{s w}+\frac{N M}{V \epsilon_{s w}}\right) \\
\mathrm{V} \uparrow, \epsilon_{s w} \downarrow \Rightarrow \boldsymbol{Q}_{a v g} \uparrow,\left(C_{a v g}-C_{a v g}^{*}\right) \downarrow
\end{gathered}
$$

Main Results

Tails Bounds

For large enough x and all time t

- For LASS Static: $\mathbb{P}(|Q(t)| \geq x) \leq \exp \left(-\Theta\left(\epsilon_{s w} \epsilon_{g}\right) x\right)+\boldsymbol{O}\left(\frac{\log (t)}{t}\right)$
- For LASS Dynamic: $\mathbb{P}(|Q(t)| \geq x) \leq \exp \left(-\Theta\left(\epsilon_{g}\right) x\right)+\boldsymbol{O}\left(\frac{\log (t)}{t}\right)$

Decay rate of LASS Static Depends on $\boldsymbol{\epsilon}_{\boldsymbol{s w}}$

Simulation Results

- Three algorithms for $\mathbf{8}$ Users and $\mathbf{3}$ BSs simulated until convergence
- DP: Drift + Penalty (Baseline with NO Switching Cost)
- LSG: LASS Static
- LD: LASS Dynamic

Simulation Results

- First Plot: $\mathbf{Q}_{\text {avg }}$ of $\mathbf{D P}<\mathbf{L D}<\mathbf{L S G} \quad(\mathrm{V}=100$, load $=0.9)$
- Second plot: $C_{a v g}$ of $\operatorname{DP}>\operatorname{LD} \approx \operatorname{LSG} \quad\left(V=100, \epsilon_{s w}=0.1\right)$

Switching Rate ($\epsilon_{\text {sw }}$)

Simulation Results

- Separation of queue length tail distribution
- DP < LD << LSG (V = 100, load = 0.9)
- Differences are more pronounced for smaller $\epsilon_{s w}$

Thanks!

Step I: Arrival and Channel Realization

- Arrival and Channel process
- I.i.d. across time slots and possibly correlated in a time slot

Example: $\mathbf{2}$ BS 1 User

Step II: Base Station Activation

- Activate a subset of BSs
- Cost of operation + switching at time t

$$
C(t)=c_{1}(\# \text { Active BS })+c_{0}(\# B S \text { switch })
$$

Green: Active Blue: Inactive

$$
C(t)=c_{1}+2 c_{0}
$$

BS Subset
Time $=\boldsymbol{t}-1$

Current
BS Subset
Time $=t$

Step III: Channel Observation

Probability ($\mu_{\boldsymbol{h}}$):	0.5	0.
Channel H1	1	0
States H2	0	1

- Observe channel after activation
- Why? Probing channel requires energy

Current
BS Subset

$\wedge \begin{gathered}\text { Channel } \\ \text { Observation }\end{gathered}$

Step IV: Scheduling

'Active BS'- User matching

- Each user can connect to at most one BS
- Each BS can connect to at most one user

Switching Constrained Max-weight Scheduling Objective

- Minimize cost subject to exponential decay

$$
\begin{aligned}
& \qquad \text { Minimize } C_{a v g}^{\phi} \\
& \text { Subject to: } \\
& \qquad \text { is a causal policy } \\
& \text { Exponential Decay: } \exists c>0, \forall t \text {, large x } \\
& \mathbb{P}^{\phi}\left(|Q(t)|_{1} \geq x\right) \leq \exp (-c x)
\end{aligned}
$$

System is stable : $Q_{a v g}^{\phi}<\infty$
Exponential Decay implies Stability

Switching Constrained Max-weight Scheduling How to Schedule?

Edge Weight (BS n, User m):
If $B S n$ is active: $\boldsymbol{Q}_{n m}(t) \boldsymbol{H}_{n m}(t)$
Otherwise: 0
Schedule the Max Weight Matching

Switching Constrained Max-weight Scheduling What to Switch to?

Drift+Penalty Method

Best BS Subset maximizes (Expected Weight $(J)-\mathrm{V}|J|)$
Expected Weight $(J)=\sum_{h} \widehat{\mu}_{h} M W_{h}(J)$
J : A BS subset $\widehat{\mu}_{h}$: Channel Probability Estimates
$M W_{h}(J)$: Value of Max-weight matching

1) BS Subset J is active
2) Channel state h occurs

Switching Constrained Max-weight Scheduling What to Switch to?

BS Subset	MaxWeight		Penalty	Total
	CS 1	CS 2		
Both OFF	0	0	0	0
BS1 ON	Q1	0	V	$0.5 Q 1-\mathrm{V}$
BS2 ON	0	Q2	V	0.5 Q2 - V
Both ON	Q1	Q2	$2 V$	$0.5(Q 1+Q 2)-2 V$

Best BS Subset Vs Queue Lengths

Switching Constrained Max-weight Scheduling What to Switch to?

$J^{*}(\boldsymbol{t})$: Best BS Subset. The one to switch to.

Switching Constrained Max-weight Scheduling Drift Equation

$$
\begin{aligned}
& \mathrm{E}[\operatorname{Drift}(\mathrm{t}) \mid \Psi(t)] \\
& \leq-\epsilon_{g}|Q(t)|_{1}+C+\underbrace{c^{\prime}|Q(t)|_{1}\left|\mu_{h}-\widehat{\mu_{h}}(t)\right|_{\infty}}_{\text {Learning Error }}+\underset{\substack{\text { Switching } \\
\text { Constraint }}}{c^{\prime \prime} T(t)}
\end{aligned}
$$

Use Lyapunov Function: $|Q(t)|_{1}^{2}+\mathrm{T}(\mathrm{t})$

