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Streaming Unsupervised Learning E.i

Tasks: Images arriving online for classification

Agents: Human agents, Neural-net classifiers

o Different expertise: Unknown confusion matrices

o Deterministic labeling: Label for each image fixed

o

agents

o Limited Processing Power: One image/round

Image credits: CIFAR-10, A. Krizhevsky,
2009; thenounproject.com, (NNs - K. M.
Synstad; Faces - A. Selimov)

Resource Allocation and Label Aggregation

o Sequential routing to subset of agents

o Collected labels are continually aggregated

o Aggregation using estimated confusion matrices
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Causal Policy: Scheduling, aggregation, and labeling functions of history
How does the belief of each image evolve under a causal policy?

o Potential dependencies across images due to correlated decisions
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Pareto Optimality

Accuracy vs Arrival Rate Tradeoff:

o Higher number of Labels leads to higher accuracy (product form)

o Higher number of labels per image implies smaller max arrival rate

Threshold Accuracy: For each exiting sample

Either ‘All labels are collected’ Or ‘Confidence > Threshold’
Pareto Optimality: Operate anywhere in the Pareto curve with
bounded memory in expectation
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Dynamic Agent Selection
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Source Node

Network of Label-queues

Queue Based Architecture:

Queues in Different Rounds

o Network of interconnected label queues
o Animage traverses queues as labels are collected

Bayesian Threshold Departure:
o Exit nodes: ‘Complete labeling” or ‘Confidence > Threshold’
Max-weight Scheduling:

o Image-Agent matching: Max expected back-pressure

Experiments with Neural Network Ensembles
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Experiment 1
o 6 Classifiers: Three AlexNet, one VGG-19, and two ResNet-18

o 3 Labels: Group 1 (airplanes, ships, trucks, cars),

Group 2 (birds, frogs cats), and Group 3 (dogs, deer, horses)
Experiment 2
o 6 Classifiers: One VGG-11, one VGG-16, two VGG-19, and two ResNet-18

o b5 Labels: Group 1 (airplanes, ships), Group 2(trucks, cars),

Group 3(birds, frogs), Group 4 (cats, dogs) and Group 5(deer, horses)

o Time complexity # Agents X Sum of queue lengths

Online Learning
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Explore: In round 7 w.p. , one unlabeled image to ALL agents

Tensor decomposition based approach to unsupervised learning [1]

o Offline tensor decomposition unsuited for running time

Online tensor decomposition using tensor power method (TPM) [2]
o Fixed number of initializations in TPM does not work

o Repeated Initializations until termination condition is met

o Constant amortized runtime per round

Performance Guarantees

For any arrival rate 4 and threshold 8, for any € > 0,
if (A + €,0 + €) lies in the Pareto region
then Max-weight scheduling + online tensor decomposition
support (4, @) with bounded expected memory.
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Online Dawid-Skene Model

K classes and M classifiers
Arrival: l.i.d. N(t) images arrive in round , rate E[N(t)]img/round
Agent ‘i’: Confusion matrix C;(-,-)
True label of Image ‘j": T chosen with p.m.f. p, € Ak

Label of Image ‘j’ from Agent ‘i’: L;(i) chosen from p.m.f. Ci(Tj, : )
Image ‘j’: Deterministic (M+1)-tuple (Lj(l), o, L; (M), T])

System Dynamics

Length for label-queue £ in time T, Q,(7)

Image-Agent schedule in time 7, S(7)

New Labels provided by classifiers L(7): determined by $(7), agents
Departure from label-queue £ in time T D,(7): determined by S(7)
Arrival in label-queue £ in time T A,(7): determined by S(7), L(7)
Expected Back-pressure:

o Expectation taken over new label which is random

o §(7) = argmax X, Q,(7)(D,(S) — E[A,(S, L)])

[1] Zhang et al. ‘Spectral methods meet EM: A provably optimal algorithm for crowdsourcing.’
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