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System	Dynamics	
Length for	label-queue	ℓ in	time	𝜏,	𝑄ℓ(𝜏)
Image-Agent	schedule	in	time	𝜏,	𝑺(𝜏)
New	Labels	provided	by	classifiers	𝑳(𝜏):	determined	by	𝑺 𝜏 ,	agents
Departure from	label-queue	ℓ in	time	𝜏 𝐷ℓ(𝜏):	determined	by	𝑺 𝜏
Arrival in	label-queue	ℓ in	time	𝜏 𝐴ℓ(𝜏):	determined	by	𝑺 𝜏 , 𝑳(𝜏)
Expected	Back-pressure:

o Expectation	taken	over	new	label	which	is	random	

o 𝑺 𝜏 = 𝑎𝑟𝑔𝑚𝑎𝑥	∑ 𝑄ℓ 𝜏 (𝐷ℓ 𝑺 	− 	𝔼[𝐴ℓ(𝑺, 𝑳)])�
ℓ

o Time	complexity		#	Agents	× Sum	of	queue	lengths

Tasks: Images arriving online for classification

Agents: Human agents, Neural-net classifiers

o Different	expertise: Unknown	confusion	matrices

o Deterministic	labeling: Label	for	each	image	fixed

o Limited	Processing	Power:	One	image/round

Streaming	Unsupervised	Learning
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Online	Dawid-Skene	Model

Queue	Based	Architecture:
o Network	of	interconnected	label	queues

o An	image	traverses	queues	as	labels	are	collected

Bayesian	Threshold	Departure:	
o Exit	nodes: ‘Complete		labeling’	or	‘Confidence	>	Threshold’
Max-weight	Scheduling:
o Image-Agent	matching:	Max	expected	back-pressure

K	classes	and	M	classifiers

Arrival:	I.i.d.	𝑵(𝝉) images	arrive	in	round	𝝉,	rate	𝐄[𝑵 𝝉 ]img/round

Agent	‘i’:	Confusion	matrix		𝑪𝒊(⋅,⋅)
True	label	of	Image	‘j’:		𝑻𝒋 chosen	with	p.m.f.	𝒑𝒈 ∈ 𝚫𝐊	
Label	of	Image	‘j’	from		Agent	‘i’:	𝐿G 𝑖 chosen	from	p.m.f.		𝐶J 𝑇G, ⋅	
Image	‘j’: Deterministic	(M+1)-tuple	 𝐿G 1 , … , 𝐿G 𝑀 , 𝑇G

Belief	Evolution
Causal	Policy:	Scheduling,	aggregation,	and	labeling	functions	of	history

How	does	the	belief	of	each	image	evolve	under	a	causal	policy?

o Potential	dependencies	across	images	due	to	correlated	decisions

Explore:	In	round	𝜏	w.p.	 OPQ R
R

,	 one	unlabeled	image	to	ALL agents

Tensor	decomposition	based	approach	to	unsupervised	learning	[1]

o Offline	tensor	decomposition	unsuited	for	running	time

Online	tensor	decomposition	using	tensor	power	method	(TPM)	[2]

o Fixed	number	of	initializations	in	TPM	does	not	work

o Repeated	Initializations	until	termination	condition	is	met

o Constant	amortized	runtime	per	round	

Pareto	Optimality
Accuracy	vs	Arrival	Rate	Tradeoff:

o Higher	number	of	Labels	leads	to	higher	accuracy	(product	form)

o Higher	number	of	labels	per	image		implies	smaller	max	arrival	rate

Threshold	Accuracy:	For	each	exiting	sample		
Either	‘All	labels	are	collected’	Or	‘Confidence	>	Threshold’

Pareto	Optimality:	Operate	anywhere	in	the	Pareto	curve	with	
bounded	memory	in	expectation

Pareto	Region	Exp 1 Pareto	Region	Exp 2
Experiment	1

o 6	Classifiers:	Three	AlexNet,	one	VGG-19,	and	two	ResNet-18

o 3	Labels:	Group	1	(airplanes,	ships,	trucks,	cars),	
Group	2	(birds,	frogs	cats),	and	Group	3	(dogs,	deer,	horses)

Experiment	2

o 6	Classifiers:	One	VGG-11	,	one	VGG-16,	two	VGG-19,	and	two	ResNet-18	

o 5	Labels:	Group	1	(airplanes,	ships),	Group	2(trucks,	cars),	
Group	3(birds,	frogs),	Group	4	(cats,	dogs)	and	Group	5(deer,	horses)	

o Sequential	routing	to	subset	of	agents

o Collected	labels	are	continually	aggregated

o Aggregation	using	estimated	confusion	matrices

Resource	Allocation	and	Label	Aggregation
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Queues	in	Different	Rounds

Source	NodeNetwork	of	Label-queues

For	any	arrival	rate	𝝀 and	threshold	𝜽,	for	any	𝝐 > 𝟎,	
if	(𝝀 + 𝝐, 𝜽 + 𝝐) lies	in	the	Pareto	region	

then	Max-weight	scheduling	+	online	tensor	decomposition
support	(𝝀, 𝜽) with	bounded	expected	memory.
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