

Streaming Unsupervised Learning

Tasks: Images arriving online for classification

- **Limited Processing Power**: One image/round

Resource Allocation and Label Aggregation

- Sequential routing to subset of agents
- Collected labels are continually aggregated
- Aggregation using estimated confusion matrices

Belief Evolution

Causal Policy: Scheduling, aggregation, and labeling functions of history

How does the belief of each image evolve under a causal policy?

• Potential dependencies across images due to correlated decisions

Pareto Optimal Streaming Unsupervised Learning

Soumya Basu, Steven Gutstein*, Brent Lance* and Sanjay Shakkottai

The University of Texas at Austin, *Army Research Lab

Group 3(birds, frogs), Group 4 (cats, dogs) and Group 5(deer, horses)

Online Dawid-Skene Model

K classes and **M** classifiers

Arrival: I.i.d. $N(\tau)$ images arrive in round τ , rate $E[N(\tau)]$ img/round Agent 'i': Confusion matrix $C_i(\cdot, \cdot)$ **True label of Image 'j':** T_i chosen with p.m.f. $p_g \in \Delta_K$ **Label of Image 'j' from Agent 'i':** $L_i(i)$ chosen from p.m.f. $C_i(T_i, \cdot)$ **Image 'j':** Deterministic (M+1)-tuple $(L_i(1), ..., L_i(M), T_i)$

System Dynamics

Length for label-queue ℓ in time τ , $Q_{\ell}(\tau)$ **Image-Agent** schedule in time τ , $S(\tau)$ New Labels provided by classifiers $L(\tau)$: determined by $S(\tau)$, agents **Departure** from label-queue ℓ in time $\tau D_{\ell}(\tau)$: determined by $S(\tau)$ **Arrival** in label-queue ℓ in time $\tau A_{\ell}(\tau)$: determined by $S(\tau)$, $L(\tau)$ **Expected Back-pressure:**

• Expectation taken over new label which is random

 $\circ \mathbf{S}(\tau) = \operatorname{argmax} \sum_{\ell} Q_{\ell}(\tau) (D_{\ell}(\mathbf{S}) - \mathbb{E}[A_{\ell}(\mathbf{S}, \mathbf{L})])$

• Time complexity # Agents × Sum of queue lengths

Online Learning

Explore: In round τ w.p. $\frac{\log(\tau)}{\tau}$, one unlabeled image to **ALL** agents **Tensor decomposition** based approach to unsupervised learning [1] Offline tensor decomposition unsuited for running time **Online tensor decomposition** using tensor power method (TPM) [2]

- Fixed number of initializations in TPM does not work
- Repeated Initializations until termination condition is met
- Constant amortized runtime per round

Performance Guarantees

For any arrival rate λ and threshold θ , for any $\epsilon > 0$, if $(\lambda + \epsilon, \theta + \epsilon)$ lies in the Pareto region then Max-weight scheduling + online tensor decomposition support (λ, θ) with bounded expected memory.

References

[1] Zhang et al. 'Spectral methods meet EM: A provably optimal algorithm for crowdsourcing.' [2] Anandkumar et al. 'Tensor decompositions for learning la- tent variable models'

