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Streaming Unsupervised Learning

Tasks: Images arriving as a stream for classification
Agents: Human agents, Neural-net classifiers

o Different expertise: Unknown confusion matrices

o Frozen labeling: Label for each image fixed

agents

o Processing Rate: One image/round oo encmprteccom, (NN W

Synstad; Faces - A. Selimov)



Safest Strategy:
Send each image (task)
to both the Classifiers
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Types of Animals

Fastest Strategy:
Send each image (task)
randomly to one
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Our Approach: Dynamic Routing
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Resource Allocation and Label Aggregation

o Sequential routing
to subset of agents

o Collected labels
are continually aggregated

o Aggregation using
estimated confusion
matrices
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Streaming Dawid-Skene Model

* Time slotted system, K classes of images, and M classifiers
* Independent identically distributed arrivals with rate 4 images/timeslot

e Classifier characterized by its confusion matrix

A classifier’s labels for a specific image is frozen. Repeatedly sending
an image to the same classifier does not result in new labels.

Example: Trained Neural Network



Pareto Optimality

e Causal Policy:
Routing and aggregation are randomized functions of observed history

* Confidence = P[True label = final label | History |

Threshold Accuracy (8)

Accurately labeled with Confidence > 6
OR

Sent to ALL the classifiers Final label = f(History, independent randomness)

 Arrival Rate (A) vs Threshold Accuracy (0):
Higher 8 requires more classifiers per image on average
Higher the threshold 6 the lower the arrival rate we can support

* Goal: Achieve the “best” trade-off between throughput (4) and accuracy (0)



Prior Work: One-shot Unsupervised Learning

e Batch of samples without knowledge of true label (no ground truth)
* Fixed classifiers with unknown confusion matrices

* Aim: Combine label of all the classifiers

* EM: Dawid et al. JRSS’1979, Liu et al. Neurips’12, Zhang et al. Neurips’' 14

* Majority Voting: Li et al. Stat’14, Parisi et al. PNAS’14

 Learning Confusion Matrices: Zhang et al. Neurips’14, Jain et al. COLT’14

* Differences - In our setting:
- Streaming classification
- Rate vs accuracy tradeoff



Prior Work: Budgeted Crowdsourcing

* Finite batch of samples at beginning of time
e Classifiers from crowd arrive online (effectively randomized classifiers)
* Fixed budget of total number of classifier actions (over all samples)

* Aim: Achieve maximum accuracy given budget

e Optimal accuracy rates in budgeted crowdsourcing:
 Karger et al. Neurips’11, Khetan et al. Neurips'16

* Differences - In our setting:
- Samples arrives online
- Frozen classifiers



Prior Work: Information Processing Networks

* Fixed but randomized processors

e Accuracy can be arbitrarily high

e Streaming arrival of samples

* Exogenous departure from processors

e Aim: Support maximum arrival rate

e Capacity region characterization: Shah et al. Allerton’17

 Differences - In our setting:
- Endogenous departures
- Frozen classifiers



How Does Belief Evolve? (1/2)
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How Does Belief Evolve? (2/2)

Tj: true label of image j
L(i,j): Label of image j from classifier i
Cl(j, t): Classifiers assigned to image j up to time t

Is this true?
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The conditional belief on the true label an image potentially depends on

entire history of all co-existing images and their labels
 The set of labels acquired by an image until time t depends on the set of
classifiers that the image was scheduled to, until time t
* This set of classifiers depends on the scheduling decisions until time t
 These scheduling decisions depends on the entire past history of labels of all
images in the system until time t



Product Form of Belief Evolution

* Distribution of history depends on the the true label only through the collected
labels of the sample

Tj: true label of image |
L(i,j): Label of image j from classifier i
Cl(j, t): Classifiers assigned to image j up to time t

Product form on the Belief Evolution
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Product Form of Belief Evolution

Induction on t: P[History(t)| n; T; = k(j)]
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Product Form of Belief Evolution

Induction on t: P[History(t)| n; T; = k(j)]
1
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Network of Label Queues

* Partial Label: Observed label tuple, e.g. (cat, none), (dog, cat), (none, none)
* Label Queues: Binary classification (dogs vs cats) with 2 classifiers
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Expected MaxWeight for Agent Selection

* Let Q,(t) be queue length of label queue £ at time t

* Under assignment §
- Departure from queue €, D,(S)
- Arrival into queue £, 4,(8)

* Choose assignment according to Expected MaxWeight:

S(t) = argmax ) QuO(Dy(S) — E[A/(S)])
: /

* Belief is only dependent on the collected labels
e Expectation on Nature’s choice does not vary

over time
 Depends only on labels and confusion matrix



Performance Guarantees

* Pareto region:
Set of ( Arrival rate (4) , threshold (0) ) tuple so that the sum of

expected queue length remains bounded under some causal policy
* Pareto region is characterized by a maximum network flow problem

* Pareto Optimality:

For any arrival rate A and threshold 0, for any € > 0,
if (A + €, 0 + €) lies in the Pareto region
then Expected Backpressure + online tensor decomposition
support (4, @) with bounded expected memory.



Neural Network Ensembles
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o 6 Classifiers: Three AlexNet, one VGG-19, and two ResNet-18

o 3 Labels: Group 1 (airplanes, ships, trucks, cars),

Group 2 (birds, frogs cats), and Group 3 (dogs, deer, horses)



Neural Network Ensembles
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Experiment 2 Pareto Region Exp 2
o 6 Classifiers: One VGG-11, one VGG-16, two VGG-19, and two ResNet-18

Improved Classifiers
lead to improved
Pareto Region

Average Backlog

o 5 Labels: Group 1 (airplanes, ships), Group 2(trucks, cars),
Group 3(birds, frogs), Group 4 (cats, dogs) and Group 5(deer, horses)



Future Directions

* What fraction of Pareto Region can be covered by simple algorithms?

- Algorithms without explicitly recovering parameters
e.g. Majority voting, Routing over limited number of rounds

e Can we maximize threshold accuracy given an arrival rate?
e Can we maximize average accuracy inside Pareto Region?
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Online Learning of Confusion Matrices

* Explore (w.p. 1/t at time t) by sending one sample to all classifiers

* An (a, 3)-oracle, with n exploration samples,
outputs confusion matrices and true probability vector

with L, error at most O(n~%) with probability at least 1 — Q(n‘ﬁ)

« (0.5 —¢,1 —¢)-oracle created by adapting tensor decomposition
based one-shot unsupervised learning [Zhang et al. 2014]



Online Dawid-Skene Model

* Time slotted system, K classes of images, and M classifiers
* |.i.d. Arrival with rate A images/timeslot

* Classifieri:
* Confusion matrix C;(:,")
* Speed = 1 image / timeslot
* Image j: (M+1)-tuple (L; (1), ..., L;(M), T;)
* True label: Label T; ~ p, € Ak chosen and fixed
* Label from Classifier i: Label L; (i) ~ C; (T], : ) chosen and fixed




Sufficiency of Compressed Causal Policy

 Compressed History:

Aggregate samples with identical collected labels, delete the sample ids
 Compressed Causal Policy:

Decisions are randomized functions of the compressed history

For any causal policy there is a compressed causal policy s.t.
* For all time t, the compressed history distribution is identical
 Threshold accuracy is attained is identical

Key Proof Idea:
The belief of a sample only depends on its collected labels.
The new labels and threshold accuracy only depend on the belief.



