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Streaming Unsupervised Learning
tasks

agents
Image	credits:	CIFAR-10,	A.	Krizhevsky,	
2009;	 thenounproject.com,	 (NNs	- K.	M.	
Synstad;	Faces	- A.	Selimov)	

Tasks: Images arriving as a stream for classification

Agents: Human agents, Neural-net classifiers

o Different expertise: Unknown confusion matrices

o Frozen labeling: Label for each image fixed

o Processing Rate: One image/round
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Types of Animals 

Types of Vehicles 
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Types of Animals 

Types of Vehicles 
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Our Approach: Dynamic Routing
• Send randomly to one classifier
• If accuracy is low send to the remaining 
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Resource Allocation and Label Aggregation

o Sequential routing 
to subset of agents

o Collected labels 
are continually aggregated

o Aggregation using 
estimated confusion 
matrices
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Streaming Dawid-Skene Model

• Time slotted system, K classes of images, and M classifiers

• Independent identically distributed arrivals with rate 𝝀 images/timeslot

• Classifier characterized by its confusion matrix

A classifier’s labels for a specific image is frozen. Repeatedly sending 
an image to the same classifier does not result in new labels.

Example: Trained Neural Network



Pareto Optimality 
• Causal Policy: 

Routing and aggregation are randomized functions of observed history
• C𝐨𝐧𝐟𝐢𝐝𝐞𝐧𝐜𝐞 = ℙ[True label = 3inal label | History ]

• Arrival Rate (𝝀) vs Threshold Accuracy (𝜽): 
Higher 𝜃 requires more classifiers per image on average
Higher the threshold 𝜃 the lower the arrival rate we can support

• Goal: Achieve the “best” trade-off between throughput (𝝀) and accuracy (𝜽)

Threshold Accuracy (𝜽)
Accurately labeled with Confidence ≥ 𝜃

OR

Sent to ALL the classifiers Final label = f(History, independent randomness)



Prior Work: One-shot Unsupervised Learning

• Batch of samples without knowledge of true label (no ground truth)
• Fixed classifiers with unknown confusion matrices
• Aim: Combine label of all the classifiers
• EM: Dawid et al. JRSS’1979, Liu et al. Neurips’12, Zhang et al. Neurips’14
• Majority Voting: Li et al. Stat’14, Parisi et al. PNAS’14

• Learning Confusion Matrices: Zhang et al.  Neurips’14, Jain et al. COLT’14

• Differences - In our setting: 
- Streaming classification  
- Rate vs accuracy tradeoff 



Prior Work: Budgeted Crowdsourcing

• Finite batch of samples at beginning of time
• Classifiers from crowd arrive online (effectively randomized classifiers)
• Fixed budget of total number of classifier actions (over all samples) 
• Aim: Achieve maximum accuracy given budget
• Optimal accuracy rates in budgeted crowdsourcing:

• Karger et al. Neurips’11, Khetan et al. Neurips’16

• Differences - In our setting:
- Samples arrives online 
- Frozen classifiers



Prior Work: Information Processing Networks

• Fixed but randomized processors 
• Accuracy can be arbitrarily high
• Streaming arrival of samples 
• Exogenous departure from processors 
• Aim: Support maximum arrival rate 
• Capacity region characterization: Shah et al. Allerton’17

• Differences - In our setting:
- Endogenous departures
- Frozen classifiers



How Does Belief Evolve? (1/2)

𝐓𝐣: true label of image j

𝐇𝐢𝐬𝐭𝐨𝐫𝐲 𝐭 =G
𝒔I𝟏

𝒕

𝑬𝒗𝒆𝒏𝒕𝒔(𝒔)

ℙ ∩𝒊𝒎𝒂𝒈𝒆 𝐣 𝐓𝐣 = 𝐤 𝐣 𝐇𝐢𝐬𝐭𝐨𝐫𝐲(𝐭)]

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑡 → 𝐿𝑎𝑏𝑒𝑙𝑠(𝑡)
𝑬𝒗𝒆𝒏𝒕𝒔 𝒕
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How Does Belief Evolve? (2/2)

The conditional belief on the true label an image potentially depends on 
entire history of all co-existing images and their labels

• The set of labels acquired by an image until time t depends on the set of 
classifiers that the image was scheduled to, until time t

• This set of classifiers depends on the scheduling decisions until time t
• These scheduling decisions depends on the entire past history of labels of all 

images in the system until time t

Is this true?

𝐓𝐣: true label of image j
𝑳(𝒊, 𝒋): Label of image j from classifier i
𝑪𝒍(𝒋, 𝒕): Classifiers assigned to image j up to time t 

ℙ ∩𝒊𝒎𝒂𝒈𝒆 𝐣 𝐓𝐣 = 𝐤 𝐣 𝐇𝐢𝐬𝐭𝐨𝐫𝐲(𝐭)] =
𝟏
𝒁l

m
𝒊𝒎𝒂𝒈𝒆 𝐣

ℙ 𝐓𝐣 = 𝐤(𝐣) ∩𝒊∈𝑪𝒍(𝒋,𝒕) 𝑳 𝒊, 𝒋 = 𝒍(𝒊, 𝒋)]



Product Form of Belief Evolution
• Distribution of history depends on the the true label only through the collected 

labels of the sample

Product form on the Belief Evolution

ℙ ∩𝒊𝒎𝒂𝒈𝒆 𝐣 𝐓𝐣 = 𝐤(𝐣) 𝐇𝐢𝐬𝐭𝐨𝐫𝐲(𝐭)] =
𝟏
𝒁l

m
𝒊𝒎𝒂𝒈𝒆 𝐣

ℙ 𝐓𝐣 = 𝐤(𝐣) ∩𝒊∈𝑪𝒍(𝒋,𝒕) 𝑳 𝒊, 𝒋 = 𝒍(𝒊, 𝒋)]

= 𝟏
𝒁(𝒕)

∏𝒊𝒎𝒂𝒈𝒆 𝐣 ∏𝐢∈𝑪𝒍(𝒋,𝒕) ℙ 𝑳 𝒊, 𝒋 = 𝒍(𝒊, 𝒋) 𝐓𝐣 = 𝐤(𝐣)]ℙ[𝐓𝐣 = 𝐤(𝐣)] (Bayes Form)

𝐓𝐣: true label of image j
𝑳(𝒊, 𝒋): Label of image j from classifier i
𝑪𝒍(𝒋, 𝒕): Classifiers assigned to image j up to time t 



Product Form of Belief Evolution

Induction on t: ℙ 𝑯𝒊𝒔𝒕𝒐𝒓𝒚(𝒕) ∩𝐣 𝑻𝒋 = 𝒌(𝒋)]

=
𝟏

𝒁l(𝒕)m
𝒋

∏𝒊∈𝑪𝒍(𝒋,𝒕)ℙ 𝑳 𝒊, 𝒋 = 𝒍(𝒊, 𝒋) 𝑻𝒋 = 𝒌(𝒋)]
𝑆𝑐ℎ 𝑡 → 𝐿𝑎𝑏𝑒𝑙𝑠(𝑡)

𝑬𝒗𝒆𝒏𝒕𝒔 𝒕

ℙ 𝐻𝑖𝑠𝑡𝑜𝑟𝑦(𝑡 + 1) ∩𝐣 𝑇~ = 𝑘(𝑗)] = ℙ 𝐸𝑣𝑒𝑛𝑡𝑠 𝑡 + 1 ∩ 𝐻𝑖𝑠𝑡𝑜𝑟𝑦 𝑡 ∩𝐣 𝑇~ = 𝑘(𝑗)]
= ℙ 𝐸𝑣𝑒𝑛𝑡𝑠 𝑡 + 1 𝐻𝑖𝑠𝑡𝑜𝑟𝑦 𝑡 ,∩𝐣 𝑇~ = 𝑘(𝑗)] ℙ 𝐻𝑖𝑠𝑡𝑜𝑟𝑦 𝑡 ∩𝐣 𝑇~ = 𝑘(j)]

= ℙ 𝑆𝑐ℎ (𝑡 + 1) 𝐻𝑖𝑠𝑡𝑜𝑟𝑦 𝑡 ,∩𝐣 𝑇~ = 𝑘 𝑗 ] ×ℙ 𝐿𝑎𝑏𝑒𝑙𝑠 𝑡 + 1 ∩𝐣 𝑇~ = 𝑘, 𝑆𝑐ℎ (𝑡)]

× �
��(�)

∏~ ∏𝒊∈𝑪𝒍(𝒋,𝒕)ℙ 𝐿 𝑖, 𝑗 = 𝑙(𝑖, 𝑗) 𝑇~ = 𝑘(𝑗)]

Causal Policy
continued....



Product Form of Belief Evolution

Induction on t: ℙ 𝑯𝒊𝒔𝒕𝒐𝒓𝒚(𝒕) ∩𝐣 𝑻𝒋 = 𝒌(𝒋)]

=
𝟏

𝒁l(𝒕)m
𝒋

∏𝒊∈𝑪𝒍(𝒋,𝒕)ℙ 𝑳 𝒊, 𝒋 = 𝒍(𝒊, 𝒋) 𝑻𝒋 = 𝒌(𝒋)]

= ℙ ∩(�,�)∈���(���) 𝐿 𝑖, 𝑗 = 𝑙(𝑖, 𝑗) ∩𝐣 𝑇~ = 𝑘]

×
ℙ 𝑆𝑐ℎ (𝑡 + 1) 𝐻𝑖𝑠𝑡𝑜𝑟𝑦 𝑡 ]

𝑍l(𝑡) m
~

∏𝒊∈𝑪𝒍(𝒋,𝒕)ℙ 𝐿 𝑖, 𝑗 = 𝑙(𝑖, 𝑗) 𝑇~ = 𝑘(𝑗)]

= m
(�,~)∈���(���)

ℙ 𝐿 𝑖, 𝑗 = 𝑙(𝑖, 𝑗) 𝑇~ = 𝑘(𝑗)]

×
ℙ 𝑆𝑐ℎ (𝑡 + 1) 𝐻𝑖𝑠𝑡𝑜𝑟𝑦 𝑡 ]

𝑍l(𝑡) m
~

∏𝒊∈𝑪𝒍(𝒋,𝒕)ℙ 𝐿 𝑖, 𝑗 = 𝑙(𝑖, 𝑗) 𝑇~ = 𝑘(𝑗)]

𝑆𝑐ℎ(𝑡) is a set of (classifier, image) pairs

Acer scheduling, new label of image j
depends only on true label of j



Network of Label Queues
• Partial Label: Observed label tuple, e.g. (cat, none), (dog, cat), (none, none)
• Label Queues:  Binary classification (dogs vs cats) with 2 classifiers

Policy Controls blue edge
Nature controls red edge 

Departure Labels:
Labels for which we have desired 
accuracy or all classifiers are used

Scheduling: 
Classifiers and Label Assignment

Departure 
Labels

(𝜙, 𝜙)

(𝑑, 𝜙)

(𝑑, 𝜙)

(𝜙, 𝑐) (𝜙, 𝑑)

(𝑐, 𝜙)

(𝑑, 𝑐) (𝑑, 𝑑)

1

0

1

Good for 
only cats

Good for 
dogs & cats

Label Queues Label QueuesClassifiers

NaturePolicy ClassifiersLabel Queues Label Queues

NaturePolicy

Exam
ple 1

Exam
ple 2



Expected MaxWeight for Agent Selection

• Let 𝑄ℓ(𝑡) be queue length of label queue ℓ at time 𝑡
• Under assignment 𝑺

- Departure from queue ℓ, 𝐷ℓ(𝑺)
- Arrival into queue ℓ, 𝐴ℓ(𝑺)
• Choose assignment according to Expected MaxWeight:

𝑺 𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 ¢
ℓ

𝑄ℓ 𝑡 (𝐷ℓ 𝑺 − 𝔼[𝐴ℓ(𝑺)])

• Belief is only dependent on the collected labels
• Expectation on Nature’s choice does not vary 

over time
• Depends only on labels and confusion matrix



Performance Guarantees

• Pareto region: 
Set of ( Arrival rate (𝝀) , threshold (𝜽) ) tuple so that the sum of 
expected queue length remains bounded under some causal policy 
• Pareto region is characterized by a maximum network flow problem
• Pareto Optimality:

For any arrival rate 𝝀 and threshold 𝜽, for any 𝝐 > 𝟎, 
if (𝝀 + 𝝐, 𝜽 + 𝝐) lies in the Pareto region 

then Expected Backpressure + online tensor decomposition
support (𝝀, 𝜽) with bounded expected memory.



Neural Network Ensembles

Pareto Region Exp 1Experiment 1

o 6 Classifiers: Three AlexNet, one VGG-19, and two ResNet-18

o 3 Labels: Group 1 (airplanes, ships, trucks, cars), 
Group 2 (birds, frogs cats), and Group 3 (dogs, deer, horses)



Neural Network Ensembles

Experiment 2

o 6 Classifiers: One VGG-11, one VGG-16, two VGG-19, and two ResNet-18 

o 5 Labels: Group 1 (airplanes, ships), Group 2(trucks, cars), 
Group 3(birds, frogs), Group 4 (cats, dogs) and Group 5(deer, horses) 

Pareto Region Exp 2

Improved Classifiers
lead to improved 

Pareto Region



Future Directions

• What fraction of Pareto Region can be covered by simple algorithms?

- Algorithms without explicitly recovering parameters
e.g. Majority voting, Routing over limited number of rounds

• Can we maximize threshold accuracy given an arrival rate?
• Can we maximize average accuracy inside Pareto Region?



Backup Slides



Online Learning of Confusion Matrices

• Explore (w.p. 1/𝑡 at time t) by sending one sample to all classifiers
• An 𝜶, 𝜷 -oracle, with 𝑛 exploration samples, 

outputs confusion matrices and true probability vector 
with 𝐿« error at most O 𝑛­® with probability at least 1 − Ω 𝑛­°

• 0.5 − 𝜖, 1 − 𝜖 -oracle created by adapting tensor decomposition 
based one-shot unsupervised learning  [Zhang et al. 2014]

- Reinitialize only when a new explore sample is obtained
- Ensure w.p. 1 the initialization is ‘good’ for tensor power method
- Iteratively improve estimates between two exploration instances



Online Dawid-Skene Model

• Time slotted system, K classes of images, and M classifiers

• I.i.d. Arrival with rate 𝝀 images/timeslot

• Classifier i : 
• Confusion matrix 𝑪𝒊(⋅,⋅)
• Speed = 1 image / timeslot

• Image j: (M+1)-tuple 𝐿~ 1 , … , 𝐿~ 𝑀 , 𝑇~
• True label:  Label 𝑇~ ∼ 𝑝¹ ∈ Δ» chosen and fixed 
• Label from Classifier i: Label 𝐿~ 𝑖 ∼ 𝐶� 𝑇~, ⋅ chosen and fixed

A specific classifier labels 
a specific image 
deterministically

e.g. Trained Neural 
Network



Sufficiency of Compressed Causal Policy

• Compressed History:
Aggregate samples with identical collected labels, delete the sample ids
• Compressed Causal Policy:
Decisions are randomized functions of the compressed history

Key Proof Idea:
The belief of a sample only depends on its collected labels. 
The new labels and threshold accuracy only depend on the belief.

For any causal policy there is a compressed causal policy s.t.
• For all time t, the compressed history distribution is identical
• Threshold accuracy is attained is identical 


