

Sanjay Shakkottai¹

Joint with Soumya Basu¹, Steven Gutstein², Brent Lance²

1. UT Austin, 2. ARL

Streaming Unsupervised Learning

Tasks: Images arriving as a stream for classification **Agents:** Human agents, Neural-net classifiers

- **Different expertise**: Unknown confusion matrices
- Frozen labeling: Label for each image fixed
- **Processing Rate**: One image/round

Image credits: CIFAR-10, A. Krizhevsky, 2009; thenounproject.com, (NNs - K. M. Synstad; Faces - A. Selimov)

Safest Strategy: Send each image (task) to both the Classifiers

Types of Vehicles

High accuracy, but low throughput

Fastest Strategy: Send each image (task) randomly to one

Classifier

Types of Vehicles

Lower accuracy, but high throughput

Resource Allocation and Label Aggregation

- Sequential routing to subset of agents
- Collected labels
 are continually aggregated
- Aggregation using
 estimated confusion
 matrices

Streaming Dawid-Skene Model

- Time slotted system, K classes of images, and M classifiers
- Independent identically distributed arrivals with rate λ images/timeslot
- Classifier characterized by its confusion matrix

A classifier's labels for a specific image is **frozen**. Repeatedly sending an image to the same classifier does not result in new labels. Example: Trained Neural Network

Pareto Optimality

- Causal Policy: Routing and aggregation are randomized functions of observed history
- **Confidence** = **P**[True label = final label | History]

Threshold Accuracy (θ)Accurately labeled with Confidence $\geq \theta$ ORSent to ALL the classifiers

Final label = f(History, independent randomness)

• Arrival Rate (λ) vs Threshold Accuracy (θ):

Higher θ requires more classifiers per image on average Higher the threshold θ the lower the arrival rate we can support

• **Goal**: Achieve the "best" trade-off between throughput (λ) and accuracy (θ)

Prior Work: One-shot Unsupervised Learning

- Batch of samples without knowledge of true label (no ground truth)
- Fixed classifiers with unknown confusion matrices
- Aim: Combine label of all the classifiers
- EM: Dawid et al. JRSS'1979, Liu et al. Neurips'12, Zhang et al. Neurips'14
- Majority Voting: Li et al. Stat'14, Parisi et al. PNAS'14
- Learning Confusion Matrices: Zhang et al. Neurips'14, Jain et al. COLT'14
- Differences In our setting:
 - Streaming classification
 - Rate vs accuracy tradeoff

Prior Work: Budgeted Crowdsourcing

- Finite batch of samples at beginning of time
- Classifiers from crowd arrive online (effectively randomized classifiers)
- Fixed budget of total number of classifier actions (over all samples)
- Aim: Achieve maximum accuracy given budget
- Optimal accuracy rates in budgeted crowdsourcing:
 - Karger et al. Neurips'11, Khetan et al. Neurips'16
- Differences In our setting:
 - Samples arrives online
 - Frozen classifiers

Prior Work: Information Processing Networks

- Fixed but randomized processors
- Accuracy can be arbitrarily high
- Streaming arrival of samples
- Exogenous departure from processors
- Aim: Support maximum arrival rate
- Capacity region characterization: Shah et al. Allerton'17
- Differences In our setting:
 - Endogenous departures
 - Frozen classifiers

How Does Belief Evolve? (1/2)

How Does Belief Evolve? (2/2)

The conditional belief on the true label an image potentially depends on entire history of all co-existing images and their labels

- The set of labels acquired by an image until time t depends on the set of classifiers that the image was scheduled to, until time t
- This set of classifiers depends on the scheduling decisions until time t
- These scheduling decisions depends on the entire past history of labels of all images in the system until time t

Product Form of Belief Evolution

• Distribution of history depends on the the true label only through the collected labels of the sample

T_j: true label of image j
L(i, j): Label of image j from classifier i
Cl(j, t): Classifiers assigned to image j up to time t

Product form on the Belief Evolution

$$\mathbb{P}\left[\cap_{image j} \mathbf{T}_{j} = \mathbf{k}(j) \middle| \text{History}(t)\right] = \frac{1}{Z'} \prod_{image j} \mathbb{P}\left[\mathbf{T}_{j} = \mathbf{k}(j) \middle| \cap_{i \in Cl(j,t)} L(i,j) = l(i,j)\right]$$
$$= \frac{1}{Z(t)} \prod_{image j} \prod_{i \in Cl(j,t)} \mathbb{P}\left[L(i,j) = l(i,j) \middle| \mathbf{T}_{j} = \mathbf{k}(j)\right] \mathbb{P}\left[\mathbf{T}_{j} = \mathbf{k}(j)\right] \quad \text{(Bayes Form)}$$

Product Form of Belief Evolution

Induction on t: $\mathbb{P}[History(t)| \cap_j T_j = k(j)]$ = $\frac{1}{Z'(t)} \prod_j \prod_{i \in Cl(j,t)} \mathbb{P}[L(i,j) = l(i,j)| T_j = k(j)]$

$$\underbrace{\frac{Events(t)}{Sch(t) \rightarrow Labels(t)}}$$

 $\mathbb{P}[History(t+1)|\cap_{j} T_{j} = k(j)] = \mathbb{P}\left[Events(t+1) \cap History(t)|\cap_{j} T_{j} = k(j)\right]$ $= \mathbb{P}\left[Events(t+1)|History(t),\cap_{j} T_{j} = k(j)\right] \mathbb{P}\left[History(t)|\cap_{j} T_{j} = k(j)\right]$ $* \mathbb{P}\left[Sch(t+1)|History(t),\bigcap_{j} T_{j} = k(j)\right] \times \mathbb{P}\left[Labels(t+1)|\cap_{j} T_{j} = k,Sch(t)\right]$ $\times \frac{1}{Z'(t)} \prod_{j} \prod_{i \in Cl(j,t)} \mathbb{P}\left[L(i,j) = l(i,j)|T_{j} = k(j)\right]$

Causal Policy

continued....

Product Form of Belief Evolution

Induction on t: $\mathbb{P}[History(t)| \cap_j T_j = k(j)]$ = $\frac{1}{Z'(t)} \prod_j \prod_{i \in Cl(j,t)} \mathbb{P}[L(i,j) = l(i,j)| T_j = k(j)]$

 $= \mathbb{P}\left[\bigcap_{(i,j)\in Sch(t+1)} L(i,j) = l(i,j) \middle| \bigcap_{j} T_{j} = k\right] \quad Sch(t) \text{ is a set of (classifier, image) pairs}$

$$\times \frac{\mathbb{P}[Sch(t+1)|History(t)]}{Z'(t)} \prod_{j} \prod_{i \in Cl(j,t)} \mathbb{P}[L(i,j) = l(i,j)|T_j = k(j)]$$

 $= \prod_{\substack{(i,j)\in Sch(t+1)}} \mathbb{P}[L(i,j) = l(i,j) | T_j = k(j)]$ After scheduling, new label of image j depends only on true label of j $\times \frac{\mathbb{P}[Sch(t+1)| \operatorname{History}(t)]}{Z'(t)} \prod_{j} \prod_{i \in Cl(j,t)} \mathbb{P}[L(i,j) = l(i,j) | T_j = k(j)]$

Network of Label Queues

- Partial Label: Observed label tuple, e.g. (cat, none), (dog, cat), (none, none)
- Label Queues: Binary classification (dogs vs cats) with 2 classifiers

Expected MaxWeight for Agent Selection

- Let $Q_{\ell}(t)$ be queue length of label queue ℓ at time t
- Under assignment S
 - Departure from queue ℓ , $D_{\ell}(\boldsymbol{S})$
 - Arrival into queue ℓ , $A_{\ell}(S)$
- Choose assignment according to Expected MaxWeight:

$$\boldsymbol{S}(t) = \operatorname{argmax} \sum_{\ell} Q_{\ell}(t) (D_{\ell}(\boldsymbol{S}) - \mathbb{E}[A_{\ell}(\boldsymbol{S})])$$

- Belief is only dependent on the collected labels
- Expectation on Nature's choice does not vary over time
 - Depends only on labels and confusion matrix

Performance Guarantees

• Pareto region:

Set of (Arrival rate (λ) , threshold (θ)) tuple so that the sum of expected queue length remains bounded under some causal policy

- Pareto region is characterized by a maximum network flow problem
- Pareto Optimality:

For any **arrival rate** λ and **threshold** θ , for any $\epsilon > 0$, if $(\lambda + \epsilon, \theta + \epsilon)$ lies in the Pareto region then Expected Backpressure + online tensor decomposition support (λ, θ) with bounded expected memory.

Neural Network Ensembles

Experiment 1

- 6 Classifiers: Three AlexNet, one VGG-19, and two ResNet-18
- 3 Labels: Group 1 (airplanes, ships, trucks, cars),
 Group 2 (birds, frogs cats), and Group 3 (dogs, deer, horses)

Neural Network Ensembles

Experiment 2

Improved Classifiers lead to improved Pareto Region

• 6 Classifiers: One VGG-11, one VGG-16, two VGG-19, and two ResNet-18

5 Labels: Group 1 (airplanes, ships), Group 2(trucks, cars),
 Group 3(birds, frogs), Group 4 (cats, dogs) and Group 5(deer, horses)

Future Directions

- What fraction of Pareto Region can be covered by simple algorithms?
 - Algorithms without explicitly recovering parameters e.g. Majority voting, Routing over limited number of rounds
- Can we maximize threshold accuracy given an arrival rate?
- Can we maximize average accuracy inside Pareto Region?

Backup Slides

Online Learning of Confusion Matrices

- Explore (w.p. 1/t at time t) by sending one sample to all classifiers
- An (α, β) -oracle, with n exploration samples, outputs confusion matrices and true probability vector with L_{∞} error at most $O(n^{-\alpha})$ with probability at least $1 - \Omega(n^{-\beta})$
- $(0.5 \epsilon, 1 \epsilon)$ -oracle created by adapting tensor decomposition based one-shot unsupervised learning [Zhang et al. 2014]
 - Reinitialize only when a new explore sample is obtained
 - Ensure w.p. 1 the initialization is 'good' for tensor power method
 - Iteratively improve estimates between two exploration instances

Online Dawid-Skene Model

- Time slotted system, K classes of images, and M classifiers
- I.i.d. Arrival with rate λ images/timeslot
- Classifier i :
 - Confusion matrix $C_i(\cdot, \cdot)$
 - **Speed** = 1 image / timeslot
- Image j: (M+1)-tuple $(L_j(1), ..., L_j(M), T_j)$
 - **True label:** Label $T_j \sim p_g \in \Delta_K$ chosen and fixed
 - Label from Classifier i: Label $L_i(i) \sim C_i(T_i, \cdot)$ chosen and fixed

- A specific classifier labels a specific image deterministically
 - e.g. Trained Neural Network

Sufficiency of Compressed Causal Policy

• Compressed History:

Aggregate samples with identical collected labels, delete the sample ids

• Compressed Causal Policy:

Decisions are randomized functions of the compressed history

For any causal policy there is a compressed causal policy s.t.

- For all time t, the compressed history distribution is identical
- Threshold accuracy is attained is identical

Key Proof Idea:

The belief of a sample only depends on its collected labels. The new labels and threshold accuracy only depend on the belief.